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1 Introduction

In MA124 Maths by Computer, we have seen an example of approximating π using computers. The
method is given as follows:

1. Generate n random points (x, y) inside the square [−1, 1]× [−1, 1] uniformly.

2. Count the number of points that lie in the set {(x, y) : x2 + y2 ≤ 1}, the unit circle.

3. Let Z be the number of points lying in the circle. A point either falls in the circle or does not
falls in the circle, so Z ∼ Bin(n, p) where n is the number of random points generated and
p = P[a point lies inside circle].

4. Estimate the probability that a point lies inside the circle by Z/n (this is known as the max-
imum likelihood estimator for data modelled by a Binomial random variable and proved in
ST220 Introduction to Mathematical Statistics).

5. We know that

P[a point lies inside circle] =
Area of the unit circle

Area of the unit square
=

π

4

so we estimate π by 4× Z
n .

The following diagram, taken from [10], illustrates this approximation:

Figure 1: Monte Carlo Simulation with 1000 points

This is an example of Monte Carlo integration (more in Section 4) which uses randomness to ap-
proximate integrals – every time we perform a simulation we obtain different estimates of π, which is
in contrast to deterministic methods such as Simpson’s rule.

Monte Carlo methods is a class of simulation-based computational techniques which uses random-
ness to solve problems that are deterministic in nature, for example numerical integration, option
pricing, optimization, etc. It is one of the most important analytical tools for modern statistical in-
ference and has significant applications in physics and mathematical finance.

In this essay, we will explore the mathematical theory of Monte Carlo methods: what “randomness”
is in the context of statistical simulations; how we can obtain random samples via simulation meth-
ods, and ultimately how we can use them to solve problems. For the majority of the essay, we follow
closely from Chapters 1, 2 and 5.1 of Ritabrata Dutta’s lecture notes for ST407 Monte Carlo Meth-
ods in [1], as well as the contents from Chapter 1-6 of Matthias Winkel’s lecture notes for Simulation
(a second-year course at the University of Oxford) in [7].
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2 Pseudo-random numbers

In the example of estimating π in the introduction, we have assumed that we are able to generate
random points uniformly using a computer algorithm, and for any Monte Carlo simulation we need
to reproduce randomness using computers. This is indeed a philosophical paradox, since computer
algorithms are deterministic in nature so the points generated in the 2 × 2 square cannot be truly
random. It turns out that these sequences of ”random numbers” generated by computers are known
as pseudo-random numbers which are deterministic, and are usually used in Monte Carlo simula-
tions.

As we will see in later sections, we can easily obtain samples from other distribution via determinis-
tic algorithms by only using U [0, 1] as our only source of “randomness”. A way to generate pseudo-
random numbers, which is currently used by programming languages such as Python and R, is by
using psuedo-random number generators (PRNGs). Their typical structure, taken from [4]
Chapter 3.1, is given as follows:

There is a finite set S of states, and a function f : S → S. There is also an output space U , which is
usually [0, 1] and an output function g : S → U so that the output number always lie between 0 and
1. The generator is given an initial value for the state, S0 which is known as the seed. We can then
define a sequence of random numbers by

Sn := f(Sn−1), n ≥ 1;

Un := g(Sn)

This is just an iteration and there is nothing random here: if we choose the same seed and run the
algorithm twice we will eventually get the same output. Since S is finite, there exists some positive
integer p such that Sn+p = Sn, and the smallest p that satisfies this relation is known as the period
of the generator.

A good pseudo-random number generator should possess the following properties (taken from [3]
Chapter 3.1):

• For any initial seed, the resultant sequence has the “appearance” of being a sequence of inde-
pendent U [0, 1] random variables.

• For any initial seed, the period of the PRNG should be long. For example, the Mersenne Twister,
a very popular modern PRNG, has period 219937 − 1 (see [2] Chapter 6.1.1);

• The values can be computed efficiently on a digital computer.

Here is one of the oldest and most well-known PRNGs based on simple recursions using modulo
arithmetic, taken from [4] Chapter 3.2.1 and [3] Chapter 3.1, which gives a good insight on how
PRNG works:

Example (Linear congruential random number generator (LCRNG)). The LCRNG is defined by
the recurrence relation

Xn := (a+ bXn−1) mod m

where X1, X2, . . . is a sequence of pseudo-random values, X0 is the seed (and should be specified by
the user for reproducibility), a and b are integers in {0, . . . ,m − 1}, and m is a positive integer. The
state space in this case is {0, . . . ,m− 1}.
We then choose our output function g : S → [0, 1] as

g(Xn) =
Xn

m

so that the output lies between 0 and 1.
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We will not go into the details of this algorithm, for example, how constants a, b and m should be
chosen (they have to satisfy the criteria for being a good PRNG), but it is worth nothing that this
is a seriously flawed algorithm for reproducing randomness. This is illustrated by Marsaglia’s theo-
rem from number theory (see [5] for a detailed discussion). In fact, much better methods exist, such
as the Multiply-with-carry pseudo-random number generator (developed by Marsaglia himself to ad-
dress the issues of LCRNGs) which is mainly used in game development and the Mersenne Twister
which is the default PRNG in many programming languages including R, Python and MATLAB.

3 Simulation methods

Now we know that computers are able to generate sequences of independent U [0, 1] by PRNGs, and
from [6] Chapter 5.5 it turns out that this is the only “randomness” that a computer can generate
naturally by itself. So the question is whether we can generate more complicated random variables
and stochastic models from these uniform random variables. In this section we will present meth-
ods of obtaining samples from other distributions using psuedo-random numbers, which is known as
statistical simulation.

3.1 The inversion method

One of the simplest methods of generating random samples from a distribution with cumulative dis-
tribution function F (x) = P(X ≤ x) is based on the inverse of the CDF. The following theorem is
taken from ST220 Introduction to Mathematical Statistics:

Theorem (Probability integral transform). Suppose X is a continuous random variable with a con-
tinuous and strictly increasing CDF FX(x). Then the random variable defined by Y := FX(X) ∼
U [0, 1].

Proof.

P(Y ≤ y) = P(X ≤ F−1
X (y)) (for y ∈ (0, 1))

= FX(F−1
X (y))

=


0 if y < 0

y if y ∈ [0, 1]

1 if y > 1

fY (x) =
d

dy
FX(F−1

X (y))

=

{
1 if y ∈ [0, 1]

0 otherwise .

This implies that Y ∼ U [0, 1].

It turns out that we can work backwards and sample from X using U [0, 1]:

Let U ∼ U [0, 1] and Z = F−1
X (U). Then for x ∈ Im(F−1

X ), we have

P(Z ≤ x) = P(F−1
X (U) ≤ x)

= P(U ≤ FX(x))

=
FX(x)− 0

1− 0

= FX(x)

4



so any continuous random variable X with a continuous and strictly increasing CDF can be sampled
using U [0, 1].

However, in cases where FX is not strictly increasing, the inverse F−1
X does not exist and if FX is

not continuous (e.g discrete random variables), then it is not differentiable (since differentiability
implies continuity) and differentiating the CDF does not make sense. To deal with these potential
issues, we define the generalised inverse (this definition is taken from [1] Chapter 2.1) as follows:

Definition (Generalised inverse function). The generalised inverse function F− : [0, 1] → R ∪
{−∞,∞} is defined as

F−(u) := inf{x ∈ R : FX(x) ≥ u}
with the convention that inf{∅} = ∞ and for any set S that is not bounded below inf S = −∞.
The following figure illustrates this definition for F which is not continuous at x1 and not strictly
increasing:

Figure 2: Illustration of the generalised inverse function

We can see that for any a ≥ x1 we have F (a) ≥ u. So we pick the smallest value of a that satisfies
F (a) ≥ u, so in this case F−(u) = x1.

Lemma. F−
X (u) ≤ x ⇐⇒ u ≤ FX(x).

Proof. ( ⇐= ) This follows directly from the definition of F−.
( =⇒ ) F−

X (u) ≤ x =⇒ F−
X (u) < ∞ =⇒ {x ∈ R : FX(x) ≥ (u)} ̸= ∅. So fix a decreasing sequence

(xn) ⊂ {x ∈ R : FX(x) ≥ (u)} such that xn → F−
X (u) as n → ∞. By right-continuity of FX ,

lim
xn↘F−

X (u)
FX(xn) = FX(F−

X (u))

and by definition FX(xn) ≥ u for all n ∈ N so FX(F−
X (u)) ≥ u.

Since CDF is increasing, F−
X (u) ≤ x =⇒ FX(F−

X (u)) ≤ F (x). Combining the two inequalities we
have

F−
X (u) ≤ x =⇒ u ≤ F (x).

With this definition and lemma we can prove the following proposition:

Proposition. Let U ∼ U [0, 1] and FX be a CDF. Then F−
X (U) has CDF FX .

Proof. From the previous lemma, F−
X (u) ≤ x ⇐⇒ u ≤ FX(x). Then for U ∼ U [0, 1],

P(F−
X (U) ≤ x) = P(U ≤ FX(x)) = FX(x).
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Now we can introduce the Inversion method algorithm, which is taken from [8] Lecture 2:

Algorithm (Inversion method). The algorithm is given as follows:

1. Given CDF F , calculate F−;

2. Simulate independent Ui ∼ U [0, 1] using pseudo random number generators;

3. Return Xi = F−(Ui) ∼ F .

We now provide a simple example which is taken from [7] Chapter 2.1:

Example (Weibull distribution). The Weibull distribution is a model with parameters λ > 0 and
k > 0 that is widely used in survival analysis. Its has probability density function

f(x;λ, k) =

{
k
λ

(
x
λ

)k−1
exp

(
−x

λ

)k
if x ≥ 0

0 if x < 0

and cumulative distribution function

F (x;λ, k) = 1− exp
(
−x

λ

)k
.

F is continuous and strictly increasing , so we can just calculate F−1:

u = 1− exp
(
−x

λ

)k
=⇒ F−1(u) = λ log

(
1

1− u

)(1/k)

Hence we can generate random samples from a Weibull random variable with parameters λ and k by

applying the transformation λ log

(
1

1− U

)(1/k)

to a uniform random variable U ∼ U [0, 1].

The inversion method is a type of transformation method in which we generate random samples
from a distribution other than the target distribution and apply transformations to them so that
they come from the desired target distribution. These methods are extremely efficient but it can be
difficult to find these transformations. Often, probability distributions are defined via their probabil-
ity mass/density functions, and the inversion method does not work with distributions whose cumu-
lative distribution function is not available in closed form, for example the gamma distribution and
the Normal distribution. In these cases we will have to use other methods of sampling.

3.2 Rejection sampling

Rejection sampling is a method to generate random samples from a target probability distribution
that is difficult or impossible (e.g. cannot be sampled via transformation methods) to sample from
directly.
The basic idea of rejection sampling is as follows: we sample from a proposal distribution over a
larger space than the target distribution and reject samples that are unlikely from the target dis-
tribution in a systematic way. For simplicity we only consider cases when the target distributions
are continuous.

Suppose we want to sample from a target distribution X on a sample space Ω ⊆ R which is continu-
ous with pdf fX . Rejection sampling is based on the identity

fX(x) =

∫ fX(x)

0

1 du =

∫ ∞

0

1{[0,fX(x)]}(u) du.
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Note that
∫
R f(x) dx = 1, and 1{[0,fX(x)]}(u) is a function that depends on both x and u, so we

can interpret this as a joint pdf between x and u. This implies that fX(x) can be interpreted as the
marginal density of a uniform distribution over the area under fX(x), {(x, u) : x ∈ Ω, 0 ≤ u ≤
fX(x)}. So one way of simulating X is by simulating over a uniform distribution (X,U) over a sub-
set of R2 with area 1, and by the above identity X is marginally distributed from fX . But this does
not tell us how to sample uniformly from this area, which can be quite complicated, especially if we
try to extend this idea to sampling from distributions of multivariate random variables (or random
vectors).

Let A := {(x, u) : x ∈ Ω, 0 ≤ u ≤ fX(x)}. We can instead sample over S ⊇ A in which direct
sampling is “easy” – we can easily simulate using transformation methods. One way of obtaining S
is by bounding fX by M · gX , where M > 1 is a real constant and gX is a distribution we can easily
sample from. A uniform distribution on A can then be obtained by drawing from a uniform distri-
bution on S, and rejecting samples in S that are not in A. In fact, this was the idea that we used in
the introductory example of approximating π. We now have the algorithm for rejection sampling:

Algorithm (Rejection sampling). Suppose we want to simulate a random variable X on a sample
space Ω ∈ R from its density f but we cannot do so directly. We then find an alternative density
function g, known as the proposal distribution, such that

(i) ∃M ∈ R such that
f(x)

g(x)
< M ∀x ∈ Ω, i.e.

f(x)

g(x)
is bounded;

(ii) supp(g) ⊃ supp(f), where supp(f) = {x ∈ Ω : f(x) ̸= 0} is the support of f . This means that
the domain of f is contained in the domain of g.

If the above conditions are satisfied, then the algorithm (taken from [2] Chapter 6.3.1) is given by

1. Generate Y from g and a U from U [0, 1];

2. If U ≤ f(Y )

Mg(Y )
then accept Y as a sample from f , otherwise return to step 1.

Proposition. The probability of having an acceptance is 1/M and the accepted values of the rejec-
tion sampling algorithm has pdf f .

The following proof is adapted from [8] Lecture 3 and [2] Chapter 6.3.2.

Proof.

P(Y is accepted) =

∫
Ω

P(draw Y = x and accept it) dx

=

∫
Ω

g(x)P
(
U ≤ f(Y )

Mg(Y )
|Y = x

)
dx

=

∫
Ω

g(x) · f(x)

Mg(x)
dx

=
1

M
.

Note that to generate a X from fX(x) we need to generated many (X,U) pairs until a single value
is accepted, and the probability that a single X is accepted is equal to 1/M . This shows that we
can model the number of attempts before X is accepted by Geom(1/M) with expectation M . For
maximal efficiency of our algorithm, we want M to be as small as possible.
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Now we find the CDF of the accepted values:

P(Y ≤ t|Y is accepted]) =
P(Y ≤ t and Y is accepted)

1/M

= M ·
∫
Ω

P(draw Y = x and accept it and it is less than t)

= M ·
∫
Ω

g(x)P
(
Y ≤ t, U ≤ f(Y )

Mg(Y )
|Y = x

)
dx

= M ·
∫
Ω

g(x)P
(
x ≤ t, U ≤ f(x)

Mg(x)

)
dx

= M ·
∫
Ω

1(−∞,t](x) · g(x) ·
f(x)

Mg(x)
dx

=

∫ t

∞
f(x) dx

The following example is taken from [8] Lecture 3:

Example (Sampling Normal distributions from a Cauchy proposal). Suppose X ∼ N (0, 1) with

pdf fX(x) =
1√
2π

exp

(
−x2

2

)
. We want to find a proposal distribution g which has a similar “bell”

shape as the normal distribution while the domain of g contains that of f . A suitable proposal dis-

tribution is Y ∼ Cauchy(0, 1) with pdf gY (x) =
1

π(1 + x2)
.

f(x)

g(x)
=

1√
2π

exp(−x2

2 )

1
π(1+x2)

=

√
π

2
(1 + x2) exp

(
−x2

2

)
We can show that by differentiating this expression twice that global maximum is attained when

x = ±1, so
f(x)

g(x)
≤ f(1)

g(1)
= 2π exp

(
−1

2

)
= M . Also g(0) = 0 and f(0) = 0 so both conditions hold.

Figure 3: Sampling Normal from a Cauchy proposal

Remark. This example serves as an example to show how rejection sampling works. In fact, Normal
distributions can be sampled directly using Box-Muller transform. This is covered in Appendix A.
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4 Monte Carlo Integration and Importance Sampling

4.1 Monte Carlo Integration

We have now developed some methods to simulate from a given distribution X, i.e. we have the
“randomness” needed in Monte Carlo simulations. It turns out that these are tools for us to answer
more specific questions such as

(i) What is the mean of this distribution, E(X)?

(ii) How likely is it for the distribution to produce values above a certain threshold a, i.e. what is
P(X > a)?

(iii) Given some function f , what is the expected value of the function f of X, E(f(X))?

Note that (iii) generalises (i) and (ii): We can set f(x) = x and f(x) = 1(a,∞)(x) to achieve (i)
and (ii) respectively. In fact, many quantities of interest, such as probabilities ((ii) is an example),
sums and integrals (by definition of expectations and law of the unconscious statistician), can be
expressed in terms of expectations. With the simulated data, we can estimate E[f(x)] using the
Monte Carlo Estimator. The definition, taken from [8] Lecture 1, is as follows:

Definition (Monte Carlo Estimator). Let X be either a discrete random variable taking values in a
countable or finite set Ω with probability mass function fX , or a continuous random variable taking
values in Ω ⊆ Rn with probability density function fX . Then, by the law of the unconscious statisti-
cian, the expected value of a function ϕ : Ω → R of X is

θ = E[ϕ(X)] =
∑
x∈Ω

ϕ(x)f(x)

if X is discrete, and

θ = E[ϕ(X)] =

∫
Ω

ϕ(x)f(x) dx

if X is continuous.

Let X1, . . . , Xn be independent and identically distributed random variables with pmf/pdf fX , i.e. a
sample of independent copies of X. Then we define

θ̂ :=
1

n

n∑
i=1

ϕ(X1)

to be the Monte Carlo Estimator of the expectation θ.

Algorithm (Monte Carlo Algorithm). The corresponding algorithm, known as the Monte Carlo
Algorithm, is given by:

1. Simulate X1, . . . , Xn from the given distribution;

2. Return n−1(ϕ(X1) + . . .+ ϕ(Xn));

so the key to such algorithm is the first step – simulation.

We will focus on the case where f is continuously distributed with pdf f – in this case the estima-
tion is known as Monte Carlo Integration because it is a numerical method to approximate the
integral

E(ϕ(X)) =

∫
Ω

ϕ(x)f(x) dx.

We return to the example in the introduction. We have

P[a point lies inside circle] =
Area of the unit circle

Area of the unit square
=

π

4
.

How do we estimate this quantity through Monte Carlo Simulation?
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Let R be the region defined by the set {(x, y) : x2 + y2 ≤ 1}, X,Y ∼ U [−1, 1] be two independent
random variables and S = [−1, 1] × [−1, 1]. We know (from ST112 Probability B) that fX,Y (x, y) =
1

1 + 1
· 1

1 + 1
=

1

4
. So ∫

R
dxdy∫

S
dxdy

=

∫ ∫
S

1R(X,Y ) · 1
4
dxdy

= E[ϕ(X,Y )]

= θ

where the expectation is with respect to the uniform distribution on S, and

ϕ(X,Y ) = 1R(X,Y ).

To sample uniformly on S, we use the transformation

X = 2U1 − 1, Y = 2U2 − 1

where U1, U2 ∼ U [0, 1].

The following proposition and the subsequent proofs are adapted from [1] Chapter 1.2.1 and [8] Lec-
ture 1:

Proposition (Properties of the Monte Carlo Estimator). Assume that θ = E[ϕ(X)] exists. Then

(i) (Unbiasedness) The Monte Carlo estimator is an unbiased estimator for θ, i.e.

E[θ̂n] = θ;

(ii) (Strong consistency) The Monte Carlo estimator is strongly consistent, i.e.

θ̂n → θ almost surely as n → ∞.

(iii) If we further assume that Var(ϕ(X)) = σ2 exists, then the mean-squared error is

E[(θ̂n − θ)2] = Var(θ̂) =
σ2

n

and is equal to the variance of the Monte Carlo Estimator (since the estimator is unbiased).
Var[ϕ(X)] can then be estimated using the sample variance.

Proof. (i) E[θ̂n] = E

(
1

n

n∑
i=1

ϕ(Xi)

)
By linearity of expectation,

E[θ̂n] =
1

n

n∑
i=1

E[ϕ(Xi)]

Since X1, . . . , Xn are identically distributed and have the same pmf/pdf as X,

E[θ̂n] =
1

n

n∑
i=1

E[ϕ(X)]

= E[ϕ(X)]

= θ
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(ii) This follows directly from the Strong Law of Large Numbers (ST202 Stochastic Processes).

(iii) From (i), E[θ̂n] = θ,

E[(θ̂n − θ)2] = E[θ̂n − E[θ̂n]]

= Var(θ̂n)

= Var

(
1

n

n∑
i=1

Var(ϕ(Xi))

)

=
1

n2

n∑
i=1

Var(ϕ(Xi)) (by independence of X1, . . . , Xn)

=
σ2

n
.

4.2 Importance sampling

We have seen how we can use the Monte Carlo Estimator to estimate θ = E[ϕ(X)], which uses sam-
ples from the pdf/pmf of X, f , to estimate θ. However, when considering problems such as the prob-
ability of a random variable exceeding a high threshold, it might not be an reliable estimator since
most of the samples will be irrelevant. Importance sampling (IS) is another method of estimating
E[ϕ(X)], but rather than sampling directly from X, it samples from a proposal distribution (like re-
jection sampling). It utilises the idea of using weights to correct for the fact that we sample from the
proposal distribution g instead of the target distribution f by adjusting the difference between f and
g.

Importance sampling is based on the following identity, taken from [8] Lecture 4:

Proposition (Importance sampling identity). Let X and Y be continuous (or discrete) random
variables on some sample space Ω with pdf(pmf) f and g respectively. If f(x) > 0 =⇒ g(x) > 0 (so
that w is well-defined) then for any (measurable) function ϕ : Ω → R we have

Ef [ϕ(X)] = Eg[ϕ(Y )w(Y )],

where w : Ω → R+ is the importance weight function

w(x) :=
f(x)

g(x)
,

and the notation Ef and Eg is used to describe the expectation with respect to f and g respectively.

Proof. Continuous case:

Ef [ϕ(X)] =

∫
Ω

f(x)ϕ(x) dx

=

∫
Ω

g(x) · f(x)
g(x)

ϕ(x) dx

=

∫
Ω

g(x)w(x)ϕ(x) dx

= Eg[ϕ(Y )w(Y )].

Replacing the integrals by sums completes the proof for the discrete case.
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This leads to the following definition of the Importance Sampling Estimator:

Definition (Importance Sampling Estimator). Let f and g be pdf/pmfs on a sample space Ω, ϕ :
Ω → R and X be a continuous/ discrete random variable with pdf/pmf f . Suppose f(x)ϕ(x) ̸=
0 =⇒ g(x) > 0, and Y1, . . . , Yn are independent and identically distributed samples with pdf/pmf g.
The importance sampling estimator is defined as

θ̂ISn :=
1

n

n∑
i=1

ϕ(Yi)w(Yi),

provided that θ = Ef [ϕ(X)] = Eg[ϕ(Y )w(Y )] exists.

The following properties and subsequent proofs of the Importance sampling are adapted from [1]
Chapter 2.3 and [8] Lecture 4:

Proposition (Properties of the Importance Sampling Estimator). The Importance Sampling Esti-
mator satisfies the following properties:

(i) (Unbiasedness) The IS estimator is an unbiased estimator for θ, i.e.

E[θ̂ISn ] = θ;

(ii) (Strong consistency) The IS estimator is strongly consistent, i.e.

θ̂ISn → θ almost surely as n → ∞.

(iii) If Varg(ϕ(Yi)w(Yi)) exists, then the mean-squared error is

E[(θ̂ISn − θ)2] = Var(θ̂ISn ) =
1

n
[Ef [ϕ(X)2w(X)]− θ2].

Proof. (i) E[θ̂ISn ] = E

(
1

n

n∑
i=1

ϕ(Yi)w(Yi)

)
.

By linearity of expectation,

E[θ̂ISn ] =
1

n

n∑
i=1

Eg[ϕ(Yi)w(Yi)]

Since Y1, . . . , Yn are identically distributed and have the same pmf/pdf g,

E[θ̂ISn ] =
1

n

n∑
i=1

Eg[ϕ(Yi)w(Yi)]

= Eg[ϕ(Y1)w(Y1)]

= Ef (ϕ(X))

= θ.

(ii) Let Zi = ϕ(Yi)w(Yi). Then Zi, . . . , Zn are i.i.d. with mean E[Zi] = Eg[ϕ(Yi)w(Yi)] = θ. The
result then follows directly from the strong law of large numbers.
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(iii)

Var(θ̂ISn ) = Varg

(
1

n

n∑
i=1

ϕ(Yi)w(Yi)

)

=
1

n2

n∑
i=1

Varg(ϕ(Yi)w(Yi)) (by independence of Y1, . . . , Yn)

=
1

n
Varg(ϕ(Yi)w(Yi)) (i ∈ {1, . . . , n})

=
1

n

[
Eg[(ϕ(Yi)w(Yi))

2]− Eg[ϕ(Yi)w(Yi)]
2
]

=
1

n

[∫
Ω

g(x)[ϕ(x)]2
[f(x)]2

[g(x)]2
dx− θ2

]
=

1

n

[∫
Ω

f(x)[ϕ(x)]2w(x) dx− θ

]
=

1

n
[Ef [ϕ(X)2w(X)]− θ2].

This shows that the mean squared error of the importance sampling depends on the choice of the
proposal distribution, while that of the Monte Carlo estimator only depends on the samples from the
underlying distribution. We want to choose the proposal distribution g such that it minimizes the
mean squared error. Before showing how to do that, we first introduce the Importance Sampling
algorithm:

Algorithm (Importance Sampling algorithm). Suppose we are given a distribution X on a sample
space Ω with pdf/pmf f and a function ϕ : Ω → R in which we want to estimate E[ϕ(X)]. Choose a
proposal distribution g which satisfies the following conditions:

(i) supp(g) ⊃ supp(f ·ϕ), i.e. the domain of g contains the domain of f ·ϕ and g should be easy to
sample from;

(ii) Varg(ϕ(Yi)w(Yi)) exists, i.e. Ef

[
ϕ(X)2 · w(x)

]
= Ef

[
ϕ(X)2 · f(X)

g(X)

]
< ∞.

If Varf [ϕ(X)] is known to be finite, then Ef [ϕ(X)2] = Varf [ϕ(X)] + Ef [ϕ(X)]2 < ∞. A suf-
ficient condition for Ef

[
ϕ(X)2 · w(X)

]
< ∞, taken from [8] Lecture 4, would then be w(x) ≤

M :

Ef

[
ϕ(X)2 · w(x)

]
=

∫
Ω

f(x)w(x)ϕ(x)2 dx

≤
∫
Ω

M · f(x)ϕ(x)2 dx

= M · Ef [ϕ(X)]

< ∞.

If the above conditions are satisfied, then the algorithm, taken from [1] Chapter 2.3, is given by:

1. For i = 1, . . . , n;

(i) Generate Yi from g;

13



(ii) Set w(Yi) =
f(Xi)

g(Xi)
.

2. Return θ̂IS =

∑n
i=1 ϕ(Yi)w(Yi)

n
.

The importance sampling algorithm is somewhat similar to the rejection sampling in terms of the
conditions of the proposal distribution, but rejection sampling generates samples from f , while im-
portance sampling provides an estimate to the expectation E[ϕ(X)].

We have now come up with an algorithm for importance sampling, and we know that the mean-
squared error of the IS estimator depends on the proposal distribution g. A natural question then
is whether there exists a proposal distribution g that minimizes the mean-squared error? The follow-
ing theorem and its subsequent proof, which is taken from [1] Chapter 2.3, answers this question:

Theorem (Optimal proposal). The proposal distribution g that minimizes the mean-squared error
(equivalently, the variance due to unbiasedness) of the IS estimator is

g∗(x) =
f(x)|ϕ(x)|
Ef [|ϕ(X)|]

with the mean-squared error being

E[(θ̂ISn − θ)2] = Var(θ̂ISn ) =
1

n
[Ef [|ϕ(X)|]2 − θ2].

Proof. We want to minimize

Var(θ̂ISn ) =
1

n
[Ef [ϕ(X)2w(X)]− θ2]]

and since θ = Ef (ϕ(X)) is independent of g, the problem now is to minimize Ef [ϕ(X)2w(X)].

Ef [ϕ(X)2w(X)] = Eg

[
ϕ(Yi)

2

(
f(Yi)

g(Yi)

)2
]

(i ∈ {1, . . . , n})

= Eg

[
|ϕ(Yi)|2

(
f(Yi)

g(Yi)

)2
]

≥
(
Eg

[
|ϕ(Yi)|

f(Yi)

g(Yi)

])2

(by Jensen’s inequality : x → x2 is convex)

= Ef [|ϕ(X)|]2.

We have achieved a lower bound for Ef [ϕ(X)2w(X)], and this lower bound is attained when g = g∗:

Ef

[
ϕ(X)2

f(X)

g∗(X)

]
= Ef [|ϕ(X)|E[|ϕ(X)|]] = Ef [|ϕ(X)|]2.

In the proof we have used the trick ϕ(X)2 = |ϕ(X)|2, because g∗ is a probability density function
so it must be non-negative. g∗, however, cannot be used in practice because it requires us to know
E[|ϕ(X)|] which is exactly what we want to estimate. It serves as a guideline to choose the proposal
distribution g: choose g(x) such that it has a similar shape to f(x) · |ϕ(x)|.

The following example is taken from [7] Chapter 5.3 as an illustration of Importance Sampling in
rare event simulation:
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Example (Tails of Normal distribution). Consider the problem of estimating θ = P[X > 3] where
X ∼ N (0, 1). The Monte Carlo estimator will not be a good choice, because the majority of the
samples will not lie in (3,∞) so to obtain a good estimate we need n to be really huge, which will
make our estimation inefficient. So we use importance sampling with a proposal distribution that
has a similar shape to fX(x) · |ϕ(x)|, where fX(x) is the pdf of X and ϕ(x) = 1(3,∞)(x). This is
basically identical to the shape of N (0, 1) for x > 3, so we choose another Normal distribution with
arbitrary mean µ and a same variance 1 (to preserve the shape) as our proposal distribution: Y ∼
N (µ, 1) with pdf

gY (x) =
1√
2π

exp

(
− (x− µ)2

2

)
Now our importance weight function is

w(x) =
fX(x)

gY (x)
= exp

(
−x2 − (x− µ)2

2

)
= exp

(
µ(µ− 2x)

2

)
so if we generate Y1, . . . , Yn from gY , the importance sampling estimator is given by

θ̂ISn =
1

n

n∑
i=1

ϕ(Yi)w(Yi) =
1

n

n∑
i=1

1(3,∞)(Yi) exp

(
µ(µ− 2Yi)

2

)
.

It was shown that in [7] Chapter 5.3 that by trying different values of µ ranging from 0 to 4, the
value of µ that minimizes the variance is approximately 3.15 with 95% confidence interval [1.3478, 1.3509].

One can generate Y1, . . . , Yn by means of rejection sampling, or by applying Box-Muller transform to
generate i.i.d. N (0, 1) and adding 3.15 to all the samples, since if X ∼ N (0, 1) then Y := σX + µ ∼
N (µ, σ2).

5 Markov Chain Monte Carlo

In this section we aim to quickly introduce, but not going into full detail, the idea of Markov Chain
Monte Carlo (MCMC), which has significant applications in Bayesian statistics to compute the
marginal likelihood, as well as statistical physics and computer science. The Metropolis-Hastings al-
gorithm, which we will briefly cover, is one of the most widely used MCMC algorithms and is widely
regarded as one of the most important algorithms of the 20th century.

We have seen how we can estimate θ = E[ϕ(X)], where X is a a random variable with pdf/pmf f
and ϕ : Ω → R using the Monte Carlo estimator and the Importance sampling estimator. What we
have done is by simulating independent and identically distributed samples from f itself via trans-
formation methods or a proposal distribution with pdf/pmf g by the means of rejection sampling. It
turns out that these methods works well in low-dimensions but are generally inefficient as the num-
ber of dimensions of our target distribution increases – this is known as the curse of dimensionality.
The following example illustrates how rejection sampling becomes inefficient in high dimensions:

Consider sampling from a standard multivariate normal distribution X ∼ N (0, I), where 0 is the
n-dimensional zero vector and I is the n × n identity matrix with a proposal distribution Y ∼
N (0, 1.012I). We know (from ST220 Introduction to Mathematical Statistics) that for an n-dimensional
multivariate normal distribution N (µ,Σ) where Σ is positive-definite, it has pdf

f(x) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

so by letting fX and gY be the pdf of X and Y respectively, we have

fX(x) =
1√
(2π)n

exp

(
−1

2
(x)T I(x)

)
=

1√
(2π)n

exp

(
−1

2
(|x|2)

)
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and

gY(x) =
1√

(2π)n(1.01)2n
exp

(
−1

2
(x)T

1

1.012
I(x)

)
=

1

1.01n
√
(2π)n

exp

(
− 1

2 · 1.012
(|x|2)

)
so

fX(x)

gY(x)
≤ (1.01)2n = M.

This implies that the number of attempts before obtaining a sample is equal to 1.012n. For low di-
mensions our algorithms is pretty efficient, but as n get larger the expected number increases expo-
nentially. Take n = 1000, the expected number of attempts before obtaining a sample ≈ 4.39 × 108,
so it makes no sense to use rejection sampling in high dimensions.

One possible way to address this problem is instead of simulating i.i.d. samples we construct a Markov
Chain X0, . . . , XN ∼ Markov(λ, P ) (so our samples are not independent) whose invariant/stationary
distribution is the target distribution f using the detailed-balance equations (i.e. reversibility, see
ST202 Stochastic Processes). We will need the following theorem on Markov Chains, taken from [6]
Chapter 1.10 and also covered in ST202 Stochastic Processes, which is very similar to the Strong
Law of Large Numbers:

Theorem (Ergodic Theorem for Markov Chains). Let (Xn)n≥0 be an irreducible Markov Chain on
a state space I. Assume that the Markov Chain admits an invariant distribution π (i.e. πP = π).
Suppose ϕ : I → R is a bounded function, X is a discrete random variable on I with pmf π and
θ = Eπ[ϕ(X)]. If (Xn)n≥0 is positive recurrent, i.e. for every state i ∈ I the expected amount of time
for the chain to return to i given that it started at i is finite, then for any initial distribution λ,

1

n

n−1∑
k=0

ϕ(Xk)
a.s.−−→ θ.

Now we can define the Markov Chain Monte Carlo estimator, taken from [8] Lecture 6:

Definition (Markov Chain Monte Carlo estimator). Let X be a discrete random variable defined
on I with pmf π, ϕ : Ω → R be a bounded function and θ = Ef [ϕ(X)]. Suppose (Xn)n≥0 ∼
Markov(λ, P ) with initial distribution λ and an irreducible transition matrix P which has an invari-
ant distribution π. Then for any initial distribution λ we define the MCMC estimator

θ̂n
MCMC

=
1

n

n−1∑
k=1

ϕ(Xk).

The MCMC estimator is strongly consistent as a consequence of Ergodic theorem.

There are many different ways to construct reversible Markov Chains with a given invariant dis-
tribution. One way is by utilising the idea of rejection sampling, but the proposed value now de-
pends on the last accepted value rather than being independent. This is the key idea of the famous
Metropolis-Hastings algorithm. One simple version of it, taken from [8] Lecture 7 and only ap-
plies to finite state spaces, is given as follows:

Algorithm (Metropolis-Hastings). Let I be a finite state space with |I| = n and π = (πi : i ∈ I) be
a distribution on I such that πi > 0 ∀ i ∈ I. Choose a proposal transition density q(y|x) (which has
to be easy to sample from), and denote P[Y = y|X = x] by Y ∼ q(·|x). Set a starting value x0 ∈ I
and set X0 = x0. Then the Metropolis-Hastings algorithm is given by: For i = 1, 2, . . . , n− 1,

1. Assume Xi−1 = xi−1.

2. Simulate Yi ∼ q(·|xi−1) and Ui ∼ U [0, 1].
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3. If Ut ≤ α(Yi|xi−1), where α(Yi|xi−1) is the acceptance probability and is defined by

α(y|x) = min

{
1,

πyq(x|y)
πxq(y|x)

}
,

then set Xi = Yi (accept), otherwise set Xi = xi−1 (reject).

This generates a reversible Markov Chain whose invariant distribution is π.

Here we have only considered the case where I is finite. In fact, MCMC methods are applicable to
countably infinite or continuous state spaces and is one of the most versatile and widespread classes
of Monte Carlo algorithms. It can also be generalised to high-dimensional state spaces I ⊆ Rn where
we replace X and Y be random vectors X and Y respectively (see [1] Chapter 5.1).

It is worth noting that the samples generated by MCMC algorithms are not independent (since they
form a Markov Chain with a non-trivial dependency structure), so they should only be used as a last
resort when Monte Carlo methods that generate independent samples fail.
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A Box-Muller Transform

We have seen in section 3.2 that we can generate samples from N (0, 1) using rejection sampling.
However, this involves choosing a proposal distribution and generating samples that has a probabil-
ity of being rejected 1−1/M , so it is not an efficient way of sampling compared to direct transforma-
tions. It turns out that there exists such method to sample from N (0, 1) directly – this is known as
the Box-Muller transformation method, named after British statistician George E. P. Box and Amer-
ican mathematician Mervin E. Muller. We will need the following theorem from ST220 Introduction
to Mathematical Statistics:

Theorem (Multivariate transformation of random variables). Let X be an absolutely continuous
random vector on Rn with density fX(x), g : Rn → Rn be bijective, continuously differentiable with
a continuously differentiable inverse h : Rn → Rn. Then Y := g(X) is also absolutely continuous
with density

fY(y) = fX(h(Y)) · |Jh(y)|,

where Jh(y) is the Jacobian given by

Jh(y) = det

(
∂h

∂y

)
= det


∂h1

∂y1
. . . ∂h1

∂yn

...
. . .

...
∂hn

∂y1
. . . ∂hn

∂yn

 .

The theorem also holds if g : U → V where U, V are open subsets of Rn as long as the other condi-
tions are satisfied, i.e. g is a diffeomorphism (MA259 Multivariable Calculus).

Before moving on to the method we first prove a handy lemma (the statement of this lemma is taken
from [1] Chapter 2.1):

Lemma. R2 ∼ Exponential(1/2) and Θ ∼ U(0, 2π) are two independent random variables if and
only if X := R cosΘ and Y := R sinΘ are independent and identically distributed standard Normal
random variables N (0, 1).

Proof. R2 and Θ are independent if and only if

fR2,Θ(r
2, θ) = fR2(r2) · fΘ(θ) =

1

2
exp

(
−1

2
r2
)
· 1

2π
.

Consider the function g : (0,∞)× (0, 2π) → R2 defined by

g(R2,Θ) = (R cosΘ, R sinΘ) = (X,Y ).

The Jacobian of g is:

Jg(r
2, θ) = det

(
cos θ · 1

2r sin θ 1
2r

−r sin θ r cos θ

)
= r cos2 θ · 1

2r
+ r sin2 θ · 1

2r
=

1

2
̸= 0

so by Inverse function theorem (MA259 Multivariable Calculus) g is bijective, continuously differen-
tiable with continuously differentiable inverse h. To compute h, we solve

R cosΘ = X, R sinΘ = Y

which gives

h(X,Y ) =

(
X2 + Y 2, arctan

(
Y

X

))
where h : R2 → (0,∞)×

(
0, π

2

)
.

18



The Jacobian of h is then given by

Jh(x, y) = det

(
2x 2y

− y
x2 · x2

x2+y2
1
x · x2

x2+y2

)
=

2x2

x2 + y2
+

2y2

x2 + y2
= 2

Now we compute the joint density of X and Y :

fX,Y (x, y) = fR2,Θ

(
x2 + y2, arctan

(y
x

))
· |2|

= 2 · 1

2π
· 1
2
exp

(
−1

2
(x2 + y2)

)
=

1√
2π

exp

(
−1

2
x2

)
· 1√

2π
exp

(
−1

2
y2
)

= fX(x) · fY (y)

Realising that this is a product of two densities of the standard Normal distribution and using fX,Y (x, y) =
fX(x)fY (y) ⇐⇒ X and Y are independent completes the proof.

Y := R2 ∼ Exponential(1/2) has CDF

FY (y) =

{
1− exp(− 1

2y) if y ≥ 0

0 otherwise

which is available in closed form so we can sample it directly using the inversion method. The in-
verse of CDF of Y is F−1

Y (U) = −2 log(1 − U) and if U ∼ U [0, 1] then the random variable F−1
Y (U)

has the same distribution as Y , so we can use
√

−2 log(1− U) to simulate R.

Now we present the Box-Muller transformation method which is taken from [10]:

Algorithm (Box-Muller transform). The Box-Muller transformation method is given as follows:

1. Simulate independent U1, U2 ∼ U [0, 1];

2. Generate R =
√
−2 log(1− U1) and Θ = 2πU2’

3. Return X =
√
−2 log(1− U1) · cos(2πU2), Y =

√
−2 log(1− U1) · sin(2πU2)

It follows directly from the above lemma that X,Y are identically and independently distributed
N (0, 1) random variables. A code illustrating the Box-Muller transformation method is included in
Appendix B3.
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B Code for Monte Carlo Simulations

The following code are written using the programming language R. The last line of each chunk shows
the output of the code.

B.1 Rejection Sampling: Normal via Cauchy Proposal

In this code we generate 10000 samples from N (0, 1) via rejection sampling:

f_X <- function(x) { 1 / sqrt(2 * pi) * exp(-0.5 * x ** 2)} #target distribution

f_Y <- function(x) { 1 / pi / (1 + x ** 2)} #proposal distribution

M <- sqrt(2 * pi) * exp(-1 / 2)

n <- 10000 #number of samples

x <- array(NA, n)

i <- 1

while(i <= n) {
U1 <- runif(1) #psuedo random number between 0 and 1

Xp <- tan(pi * (U1 - 0.5)) #inverse transform method

U2 <- runif(1)

if (U2 <= (f_X(Xp) / f_Y(Xp) / M)) {
x[i] <- Xp

i <- i + 1 }
}
(c(mean(x), var(x))) #returns the mean and variance of the resulting sample

## [1] -0.004277369 0.980464614

We can see that the mean and variance of the resulting sample are approximately 0 and 1 respec-
tively.

B.2 Introductory example: Approximating π

n <- 1000 #number of random points

x <- array(0, c(2,n)) #array to store coordinates of points generated

t <- array(0, c(1,n)) #array to store whether the point is inside circle or not

for (i in 1:n) {
x[1,i] <- 2*runif(1)-1

x[2,i] <- 2*runif(1)-1

if (x[1,i]*x[1,i] + x[2,i]*x[2,i] <= 1) {
t[i] <- 1

} else {
t[i] <- 0 }

}
print(sum(t)/n*4) #count the number of points in the circle and hence pi

## [1] 3.176

The Monte Carlo estimation of π is 3.152 in this case.
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B.3 Box-Muller Transform

n <- 100000 #100000 realisations

u1 <- runif(n) #n psuedo-random numbers between 0 and 1

u2 <- runif(n)

lambda <- 1 / 2 #parameter of the exponential distribution

r2 <- -2 * log(1 - u1) #step 2 of the algorithm

theta <- 2 * pi * u2

r <- sqrt(r2)

x <- r * cos(theta)

y <- r * sin(theta)

round(c(mean(x), var(x)), 3) #mean and variance of X to 3dp

## [1] 0.003 0.997

round(c(mean(y), var(y)), 3) #mean and variance of Y to 3dp

## [1] 0.005 1.003

round(cor(x, y),5) #correlation between X and Y

## [1] 7e-05

We can see that corr(X,Y ) ≈ 0 since X and Y are independent.
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