
Möbius Transformations



Contents

1 Introduction 1

2 The Extended Complex Plane and the Riemann Sphere 1
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1 Introduction

Möbius transformations, named in honour of German mathematician August Ferdinand Möbius (1790-
1868), appear in many complex analysis courses, but are often not discussed in depth. However, these
transformations are well worth further study, as they posses many interesting and useful properties, and
furthermore, a satisfying and complete classification is possible.

Moreover, aside from their main property of being exactly the bijective, conformal maps of the
Riemann sphere, they crop up seemingly unexpectedly in many areas of mathematics; such as projective
geometry, group theory, and even general relatively.

2 The Extended Complex Plane and the Riemann Sphere

When we consider Möbius transformations, it is more convenient to consider the extended complex place,
Ĉ, defined by Ĉ = C∪ {∞}. How do we treat this point ∞? We use the following common conventions,
as in [4, pp. 203]

a±∞ = ±∞+ a =∞ a/∞ = 0 ∀a ∈ C
a×∞ =∞× a =∞ a/0 =∞ ∀a ∈ C \ {0}

These algebraic definitions for this point make intuitive sense: we are used to the fact that ∀a ∈ C,
lim|z|→∞

a
z = 0, and ∀a ∈ C \ {0}, lim|z|→0

a
z =∞. Note also that 0

0 and ∞∞ are still undefined.

Figure 1: The Stereographic Projection

We can give this geometric meaning, by first thinking of
C as being embedded inside of R3, with z = x+ iy identified
with the point (x, y, 0), so C is the plane {(x, y, z) ∈ R3 | z =
0}.

The Riemann Sphere, Σ, in R3, is the sphere which has
the unit circle as it’s intersection with the xy-plane: Σ =
{(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}.

Set N = (0, 0, 1) - the north pole. Then we can define
the following projection ψ from the Sphere excluding the
north pole, onto the complex plane. Geometrically, for each
point P on the sphere, we draw the line through N and P
and assigns ψ(P ) as the intersection of this line with the
xy-plane.

Definition 2.1. The Stereographic Projection ψ : Σ \ {N} → C is defined as:

ψ : (x, y, z) 7→
(

x

1− z

)
+

(
y

1− z

)
i

We can further extend this to ψ : Σ → Ĉ by setting ψ(N) = ∞. This assignment makes intuitive
sense; using the geometrical viewpoint above, “the line through N and N” is not uniquely defined, but
as P moves towards N , the line through N and P approaches the horizontal and so the intersection with
the xy-plane gets further and further away from the origin. For more information about ψ see [6, pp. 140].

We will not prove this, but it doesn’t take long to show that ψ is a bijection between Σ and Ĉ.
Furthermore, under this correspondence, circles on the sphere not passing through N are circles in the
plane, and the circles that pass through N correspond to lines in the plane in addition to the point
at infinity. Therefore, if we are viewing Ĉ as the sphere we can remove the distinction and talk about
generalised circles or circles in Ĉ defined as: either a Euclidean circle in C or the union of a Euclidean
line L in C, with ∞, which we denote by L̄ = L ∪ {∞}.

For example, the extended real axis, R̄ = R ∪ {∞} is the generalised circle in Ĉ containing the real
axis. On the Riemann sphere this corresponds to the great circle through N, (0, 0,−1), (1, 0, 0).
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3 Möbius Transformations

Now with the preliminaries dealt with, we can define the transformations themselves.

Definition 3.1. [4, pp. 203] A Möbius Transformation1 is map f : Ĉ→ Ĉ of the form

f(z) =
az + b

cz + d
where a, b, c, d ∈ C, ad− bc 6= 0

The requirement for ad− bc 6= 0 is to ensure all such transformations are invertible, as we shall soon
see. By computing f in the case ad− bc = 0 we see that f is then the trivial map to a single point, so is
definitely not invertible.

Notice, that if f is a Möbius transformation, then

f(z) =
az + b

cz + d
=

(λa)z + λb

(λc)z + λd
∀λ ∈ C \ {0}

Therefore, the representation is not unique. However we can achieve near uniqueness by assuming
ad− bc = 1, because we can always ’normalise’ by dividing each coefficient by

√
ad− bc. Consequently,

we define the set of Möbius transformations as

Möb(Ĉ) = {f : Ĉ→ Ĉ | f is a Möbius transformation, and ad− bc = 1}

By near uniqueness, we mean that the representation in this set is unique up to a factor of −1. I.e.

both f(z) = az+b
cz+d , g(z) = (−a)z+(−b)

(−c)z+(−d) are the same map, and these are all the representatives of this
map.

3.1 Correspondence with Matrix groups

The first key observation is that this set forms a group.

Proposition 3.2. Möb(Ĉ) forms a group under composition of functions.

Proof. The identity element, id ∈Möb(Ĉ) (take a = d = 1, b = c = 0).

Take f, g ∈Möb(Ĉ), f : z 7→ az+b
cz+d , g : z 7→ ez+f

gz+h , then:

f ◦ g : z 7→
a ez+fgz+h + b

c ez+fgz+h + d
=
z(ae+ bg) + (af + bh)

z(ce+ dg) + (cf + dh)

f ◦ g is certainly in the correct form of a Möbius transformation. Additionally, as f, g ∈ Möb(Ĉ),

then (ae+ bg)(cf + dh)− (ce+ dg)(af + bh) = (ad− bc)(eh− fg) = 1, hence f ◦ g ∈Möb(Ĉ), so Möb(Ĉ)
is closed under composition.

Furthermore, h : z 7→ dz−b
−cz+a satisfies da − (−b)(−c) = ad − bc = 1 and f ◦ h = f ◦ h = id so

h = f−1 ∈Möb(Ĉ).

Therefore, as we know that composition of functions is associative, Möb(Ĉ) indeed forms a group.

From this we can see elements of Möb(Ĉ) are bijective, as they posses both left and right inverses.

You may have noticed that the form of the composition and inverse of a Möbius transformations looks
suspiciously like the product and inverse of 2 by 2 matrices. Let’s make this correspondence formal.

Theorem 3.3. φ : SL(2,C)→Möb(Ĉ) defined by:

φ :

(
a b
c d

)
7−→ f : z 7→ az + b

cz + d

is a group homomorphism.

1Also commonly referred to as Fractional Linear Transformations or Bilinear Transformations.

2



Proof. Take A,B ∈ SL(2,C), A =

(
a b
c d

)
B =

(
e f
g h

)
.

Firstly, this is well defined as det(A) = 1 ensures that φ(A) ∈Möb(Ĉ).

Now let f := φ(A), g := φ(B). Note that:

f ◦ g : z 7→
a ez+fgz+h + b

c ez+fgz+h + d
=
z(ae+ bg) + (af + bh)

z(ce+ dg) + (cf + dh)

Therefore:

φ(AB) = φ

((
a b
c d

)(
e f
g h

))
= φ

((
ae+ bg af + bh
ce+ dg cf + dh

))
= f ◦ g
= φ(A) ◦ φ(B)

Corollary 3.4. Möb(Ĉ) ∼= SL(2,C)
/
{I2,−I2}

Proof. If we can show ker(φ) = {I2,−I2}, then by the first isomorphism theorem the result follows, as
φ is clearly surjective.

Recall ker(φ) = {A ∈ SL(2,C) |φ(A) = id}. So if A =
(
a b
c d

)
∈ ker(φ), then b = c = 0, a

d = 1,
which means a = d. Also det(A) = ad − bc = ad = 1 so either a = d = 1 or a = d = −1. Hence
ker(φ) = {I2,−I2}

We denote SL(2,C)
/
{I2,−I2} by PSL(2,C) which stands for projective special linear group2.

This homomorphism determines the equivalence relation A ∼ B ⇔ φ(A) = φ(B). So A and B are in
the same equivalence class if and only if the are the same up to sign. We write [A] = {A,−A} as the

equivalence class of A, so for any f ∈Möb(Ĉ), f ↔ [A], where A is such that φ(A) = f . The operation
in PSL(2,C) is [A][B] = [AB].

Henceforth, when we talk about f ∈ Möb(Ĉ) keep closely in your mind the corresponding element
[A] ∈ PSL(2,C). This alternative viewpoint will be very useful later on.

3.2 Elementary Properties

At first sight, it does not seem clear what the action of these transformations on Ĉ looks like. However,
the following helps visualisation and understanding tremendously.

Proposition 3.5. Any Möbius transformation F : z 7→ az+b
cz+b can be built up from maps of the following

types:

(T1) z 7→ az (b = c = 0, d = 1)

(T2) z 7→ z + b (c = 0, a = d = 1)

(T3) z 7→ 1/z (a = d = 0, b = c = 1)

Proof. Taken from [4, pp. 205]

Case 1. c = 0
By the restriction that ad− bc 6= 0, d 6= 0, so

F = f1 ◦ f2, where f1 : z 7→ z +
b

d
, f2 : z 7→ a

d
z

Case 2. c 6= 0 Let

f1 : z 7→ z +
a

c
, f2 : z 7→ 1

c
(bc− ad)z, f3 : z 7→ 1

z
, f4 : z 7→ z + d, f5 : z 7→ cz

Then F = f1 ◦ f2 ◦ f3 ◦ f4 ◦ f5.
2Why will call it this will become evident later on.
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Example 3.6. Decompose the transformation f(z) = iz
z−i into maps of the above types.

As c 6= 0, using the above proof, f = f1 ◦ f2 ◦ f3 ◦ f4, where

f1 : z 7→ z + i, f2 : z 7→ −z, f3 : z 7→ 1

z
, f4 : z 7→ z − i

So f is just a translation by −i, followed by an inversion, then a rotation by π, and finally a translation
by i.

We can write a = Reiθ, so (T1) can be interpreted geometrically as a rotation by θ anticlockwise,
followed by an enlargement about 0 by a scale factor of R. (T2) is a translation by b. (T3), however, is
more complicated and we refer to it as the inversion map.

If we write z = reiθ, then the image w := 1
z = 1

r e
−iθ. So points outside the unit disk are mapped to

the point of the same argument inside the unit disk, then reflected in the real axis, and vice versa. In
particular 0 7→ ∞ and ∞ 7→ 0.

Recall the stereographic projection, under which points on the lower hemisphere get mapped to inside
the unit disk and points on the upper hemisphere go to outside the unit disk. With this similarity as
motivation, let us consider (ψ ◦ T ◦ ψ−1)(z) where T : R3 7→ R3, T (x, y, z) = (x,−y,−z). Geometrically
T is a rotation about the x axis by π. Using the inverse formula for ψ (which you can easily verify), if
z = a+ ib:

(ψ ◦ T ◦ ψ−1)(z) = (ψ ◦ T ◦ ψ−1)(a+ ib)

= ψ(T (ψ−1(a+ ib)))

= ψ

(
T

(
1

1 + a2 + b2
(2a, 2b,−1 + a2 + b2)

))
= ψ

(
1

1 + a2 + b2
(2a,−2b, 1− a2 − b2)

)
=

2a− 2ib

2a2 + 2b2
=

1

a+ ib
=

1

z

Therefore, ψ ◦T ◦ψ−1 is exactly (T3), so we can view an inversion instead much more simply as just
a rotation of there sphere. We will return to this idea in a much more powerful way in section 5.

One useful property that is exploited in hyperbolic geometry, to map the Cayley-Klein disk to Poincaré
half-plane is the following:

Proposition 3.7. For any distinct z1, z2, z3 ∈ Ĉ, distinct w1, w2, w3 ∈ Ĉ, there exists a unique Möbius
transformation taking z1 7→ w1, z2 7→ w2, z3 7→ w3.

Proof. Taken from [4, pp. 206] Consider both

g : z 7→
(
z − z1
z − z3

)(
z2 − z3
z2 − z1

)
, h : w 7→

(
w − w1

w − w3

)(
w2 − w3

w2 − w1

)
As {z1, z2, z3} and {w1, w2, w3} are distinct then these are both are in the correct form of a Möbius
transformation (ad − bc 6= 0). g (as you can easily verify) sends z1, z2, z3 to 0, 1,∞ respectively, and h

sends w1, w2, w3 to 0, 1,∞. Therefore, h−1 ◦ g takes z1, z2, z3 to w1, w2, w3. As Möb(Ĉ) is a group, the
composition and inverse of Möbius transformations are themselves Möbius transformations, so we have
proven existence - all that is left to do is show that this is unique.

Suppose that m : z 7→ (az+ b)/(cz+ d) has fixed points of 0, 1,∞, i.e. m(0) = 0, m(1) = 1, m(∞) =
∞. m(0) = 0 ⇒ b = 0, m(∞) =∞ ⇒ c = 0, hence m(1) = 1 ⇒ a = d. Therefore, m = id.

In light of this, take p, a Möbius transformation that also sends each zi 7→ wi. Then h ◦ p ◦ g−1 fixes
0, 1,∞, so by the above, h ◦ p ◦ g−1 = id, hence p = h−1 ◦ g. So the transformation is unique.
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Example 3.8. Find the unique transformation p taking −i 7→ ∞, i 7→ 0, −3i 7→ 1.
The proof above is constructive - it gives us a method for making such a map every time. However

in practice it can often be quicker to make it using common sense especially when ∞ is one of the target
points. We want −i 7→ ∞, i 7→ 0, so we try

p(z) = k
z − i
z + i

for some k ∈ C

Then p(−3i) = −4ki
−2i = 2k, so we take k = 1

2 . Hence p(z) = z−i
2z+2i .

An important concept in projective geometry is that of the cross ratio, a quantity that is preserved
by projective transformations of CP1 - the complex projective line. This is a useful tool to help in our
understanding of Möbius transformations and we see below in 3.10 this quantity is also invariant under
elements of Möb(Ĉ). We will discover later that this is no coincidence.

Definition 3.9. [2, pp. 37] For distinct z1, z2, z3, z4 ∈ Ĉ we define the cross ratio,

[z1, z2, z3, z4] =
(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)

Remark. The map taking z 7→ [z, z2, z3, z4] is the function sending z2, z3, z4 to ∞, 1, 0 respectively,
similar to that which we used in the proof of 3.7.

Proposition 3.10. Elements of Möb(Ĉ) preserve the cross ratio. For any Möbius transformation f ,
[z1, z2, z3, z4] = [f(z1), f(z2), f(z3), f(z4)]

Proof. By 3.5, we can decompose f into the composition of maps the types (T1), (T2), (T3), so all we
have to do is show that they each preserve the cross ratio:

[az1, az2, az3, az4] [z1 + b, z2 + b, z3 + b, z4 + b]

=
(az1 − az4)(az3 − az2)

(az1 − az2)(az3 − az4)
=

((z1 + b)− (z4 + b))((z3 + b)− (z2 + b))

((z1 + b)− (z2 + b))((z3 + b)− (z4 + b))

=
(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)
=

(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)

= [z1, z2, z3, z4] = [z1, z2, z3, z4]

[
1

z1
,

1

z2
,

1

z3
,

1

z4

]
=

( 1
z1
− 1

z4
)( 1
z3
− 1

z2
)

( 1
z1
− 1

z2
)( 1
z3
− 1

z4
)

=
1

z4z1
(z4 − z1) 1

z2z3
(z2 − z3)

1
z1z2

(z2 − z1) 1
z3z4

(z4 − z3)

=
(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)

= [z1, z2, z3, z4]

It turns out that the cross ratio is not the only quantity preserved by Möbius transformations.

Proposition 3.11. Möbius transformations map generalised circles to generalised circles.

A proof for this proposition can be found in either [2, pp. 26] or in [4, pp. 206].
The general idea is this: by proposition 3.5 we can write any Möbius transformation as the compo-

sition of simpler functions. We can see that types (T1) and (T2) will map ∞ 7→ ∞, circles and lines in
C map to circles and lines in C respectively, so preserve generalised circles. Therefore, all that needs to
be shown is that the inversion map preserves circles in Ĉ.

While we have not included the proof, it is still useful to consider what happens to different classes
of generalised circle under this map to help our visualisation of this transformation.
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There are 4 types of generalised circles:

(1) circles in C that pass through the origin
(2) circles in C not passing through the origin
(3) lines3 that pass through the origin
(4) lines that do not pass through the origin

The inversion sends type (1) 7→ (4), (4) 7→ (1), (2) 7→ (2), (3) 7→ (3). It is important to note that
although this says that circles of type (2) go to circles of type (2), this will almost always not be the
same circle.

We can use this to derive an extremely nice (and useful) property of the cross ratio.

Corollary 3.12. [z1, z2, z3, z4] ∈ R⇔ z1, z2, z3, z4 lie on a generalised circle.

Proof. [2, pp. 38]. Because z2, z3, z4 are distinct ∃g ∈Möb(Ĉ) such that g(z2) =∞, g(z3) = 1, g(z4) = 0.
By 3.10

[z1, z2, z3, z4] = [g(z1), g(z2), g(z3), g(z4)] = [g(z1),∞, 1, 0]

=
(g(z1)− 0)(1−∞)

(g(z1)−∞)(1− 0)
=
g(z1)

1

(1−∞)

(g(z1)−∞)

= g(z1)
(1/∞)− 1

(g(z1)/∞)− 1
= g(z1)

−1

−1

= g(z1)

Hence [z1, z2, z3, z4] ∈ R⇔ g(z1) ∈ R. We know z1, z2, z3, z4 lie on a generalised circle if and only if
g(z1), g(z2), g(z3), g(z4) also do, which is the case if and only if g(z1) ∈ R, as g(z1) must be on the line
through 0 and 1 which is the real axis.

This gives us a superb test to see quickly whether or not 4 complex numbers are collinear or concyclic.

Actually, by examining the cross ratio of 4 points there is a stronger result that allows us to say even
more about them geometrically (from [6, pp. 155]). Given a complex point p, another way of stating the
above corollary, is that p lies on the generalised circle C through q, r, s if and only if Im[p, q, r, s] = 0. It
is also further true that if q, r, s produce a positive (resp. negative) orientation4 on C, that p lies inside
C if and only if Im[p, q, r, s] < 0 (resp. Im[p, q, r, s] > 0).

Note that we could alternatively have shown this property of the cross ratio using a geometrical
argument, then easily deduced from that 3.11, by using that Möbius transformations preserve the cross
ratio.

In [2, pp. 51] is it shown that Möb(Ĉ) is precisely the set of bijective continuous maps that map

circlines to circlines of Ĉ, and it is shown further that all such maps are conformal (angle preserving).
Recall that the stereographic projection also sends circlines to circlines. Using this identification, it is
then shown that Möb(Ĉ) is precisely the set of all bijective conformal maps from the Riemann sphere
onto itself.

4 Classification

We will now try and classify this group and one notion that we will be using is that of a fixed point. We
define a fixed point of f , as z ∈ Ĉ such that f(z) = z.

Theorem 4.1. Let f(z) be a Möbius transformation which has 3 distinct fixed points. Then f is the
identity.

3Remember that the whole generalised circle is the line, union the point at infinity.
4This means if you move along the path q, r, s then the interior of the circle is to your left (resp. right).
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Proof. [2, pp. 30] Take m ∈ Möb(Ĉ). Assume that m 6= id. m(z) = az+b
cz+d for some a, b, c, d ∈ C.

m(∞) = a
c so m(∞) =∞⇔ c = 0.

Case 1. c = 0
Then m(z) = a

dz+ b
d (d 6= 0 as ad− bc 6= 0), so the fixed points in C are the solutions of the equation

m(z) = a
dz + b

d = z. If a
d = 1, then because m is not the identity b 6= 0. Then there are no solutions,

thus no fixed points in C.
Otherwise, ad 6= 1 so So z = b

d−a is the only fixed point in C. Therefore, if c = 0, as ∞ is also a fixed
point, m has either 1 or 2 fixed points.

Case 2. c 6= 0
m(∞) 6=∞, so the fixed points are the solution that lie in C of the equation m(z) = az+b

cz+d = z, which

are the roots of the quadratic cz2 + (d− a)z − b = 0. Therefore, if c 6= 0, m has 1 or 2 fixed points.

So the identity is the only Möbius transformations having more then 2 fixed points.

Therefore, if we now assume that f is not the identity map, then we can deduce the following from
the details of the preceding proof.

Corollary 4.2. If f ∈Möb(Ĉ), and f 6= id, then f has either 1 or 2 fixed points.

Finding the fixed points is relatively easy. You just set z = f(z) and solve for z.

Example 4.3. Find the fixed points of m1(z) = 2z+i
iz , and of m2(z) = z−2

z−1 .

Fixed points of m1 satisfy z∗ = 2z∗+i
iz∗

, so iz2∗ − 2z∗ − i = 0. Hence

z∗ =
2±
√

4 + 4i2

2i
=

2±
√

4− 4

2i
=

1

i
= −i

Fixed points of m2 satisfy z∗ = z∗−2
z∗−1 , so iz2∗ − 2z∗ + 2 = 0. Hence

z± =
2±
√

4− 8

2
=

2± 2i

2i
= 1± i

4.1 Conjugate Transformations

Definition 4.4. Möbius tranformations, f, g are said to be conjugate if ∃ p ∈ Möb(Ĉ) such that f =
p ◦ g ◦ p−1. If so we write f ∼ g.

You should notice that conjugation (as it’s name suggests) is nothing but the conjugation group action

of Möb(Ĉ) on itself, with the conjugacy class of an element being the orbit of that element. Therefore,

we know that conjugation is an equivalence relation, so partitions Möb(Ĉ).
Furthermore, the identity element is always the only element of it’s orbit, so we know the conjugacy

class of the identity map is the set just containing itself.

In PSL(2,C), the corresponding relation5 is similarity of matrices up to sign. We will therefore from
now on say [A] is similar to [B]⇔ A is similar to B or A is similar to −B. Recall that 2 matrices being
similar means they represent the same map with respect to different coordinates.

Geometrically, if f, g are conjugate, then the effect of f on C is the same as the effect of g on p(C) = C.
So conjugation represents a change of coordinates6.

Lemma 4.5. If f ∼ g, so f = p ◦ g ◦ p−1, then f and g have the same number of fixed points.

Proof. If f = id, then g = id, so f and g being the same transformation have the same number of fixed
points.

If f 6= id, then g 6= id and both f and g have 1 or 2 fixed points. Call these zi and let Nf , Ng be
the number of such points of f and g respectively. Then zi = f(zi) so p−1(zi) = p−1(f(zi)) = g(p−1(zi)),
hence p−1(zi) is a fixed point of g. As Möbius transformations are injective p−1(zi) 6= p−1(zj) for i 6= j,
hence Nf 6 Ng. Congruence is symmetric, so by the same reasoning, Ng 6 Nf . So Nf = Ng.

5Again this is just PSL(2,C) acting on itself under the conjugation action.
6This is not typically linear, as shall be explained shortly.
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4.2 Standard Form

For this section, mostly taken from [2, pp. 40], we assume m 6= id. Depending on the number of fixed
points, we now try to find class representatives for each conjugacy class.

Suppose m has 1 fixed point z∗ in Ĉ. Let w be any element of Ĉ \ {z∗}. z∗ is the only fixed point,

so (z∗, w,m(w)) is a triple of distinct points in Ĉ so there exists7 p ∈ Möb(Ĉ) that takes this triple to
(∞, 0, 1). So (p ◦m ◦ p−1)(∞) = p(m(z∗)) = p(z∗) =∞. Hence ∞ is a fixed point of this composition.

Therefore we can write (p ◦ m ◦ p−1)(z) = az + b for some a 6= 0. (Previously we have shown
m(∞) =∞⇔ c = 0). From the above Lemma, p◦m◦p−1 also must have one fixed point which we have
shown is ∞. So there are no solutions in C to the equation (p ◦m ◦ p−1)(z) = az + b = z which means
that a = 1. Additionally, (p ◦m ◦ p−1)(0) = p(m(y)) = 1, then b = 1.

Therefore, Möbius transformations m with exactly one fixed point are conjugate to n1 : z 7→ z + 1.
We call such transformations parabolic, and n1 it’s standard form.

Example 4.6. Taking m1(z) = 2z+i
iz , we showed earlier that this has one fixed point of −i. Using the

constructive method of the proof, take y = i, so m1(y) = −3i. So we want find the transformation taking
−i 7→ ∞, i 7→ 0, −3i 7→ 1. We already showed in example 3.8 that this is p(z) = z−i

2z+2i . Let’s make use

of the matrix correspondence to verify that p ◦m ◦ p−1 = n1. Taking the unique matrix (up to sign) to
represent each map(

1 −1
2 2

)(
2 1
i 0

)(
1

4i

(
2i i
−2 i

))
=

1

4i

(
1 −i
2 2i

)(
2i 3i
−2 −1

)
=

(
1 1
0 1

)
Which indeed corresponds to n1.

Suppose instead that m has 2 fixed points z∗1 , z
∗
2 in Ĉ. Take q ∈Möb(Ĉ) satisfying q(z∗1) = 0, q(z∗2) =

∞. Because of the way we chose q, (q ◦m◦ q−1)(∞) = q(m(z∗2)) = q(z∗2) =∞ so (q ◦m◦ q−1)(z) = az+ b
for some a 6= 0 as before, and (q ◦m ◦ q−1)(0) = q(m(z∗1)) = q(z∗1) = 0, so b = 0. Also a 6= 1 because id
is in a conjugacy class of it’s own.

Therefore, Möbius transformations m with exactly 2 fixed points are conjugate to n2 : z 7→ az for
some a ∈ C \ {0, 1}. We call a the multiplier of m, and n2 it’s standard form.

Example 4.7. We showed earlier that m2(z) = z−2
z−1 has 2 fixed points of 1± i. q(z) = z−(1−i)

z−(1+i) satisfies

q(1− i) = 0, q(1 + i) =∞. Again we can use the matrix correspondence to verify that q ◦m ◦ q−1 = n2.
Taking the unique matrix (up to sign) to represent each map you can verify yourself that(

1 −(1− i)
1 −(1 + i)

)(
1 −2
1 −1

)(
1

2i

(
i+ i i− 1

1 −1

))
=

(
i 0
0 −i

)
So this corresponds to n2 : z 7→ iz

−i = −z. Hence the multiplier is -1.

Like before (with p), this q is not unique. However we see below that this does not really matter,
from this lemma from [2, pp. 41].

Lemma 4.8. Suppose m ∈ Möb(Ĉ) has 2 fixed points x, y ∈ Ĉ, and that q1, q2 ∈ Möb(Ĉ) satisfy
q1(x) = q2(x) = 0, q1(y) = q2(y) =∞ then q1 ◦m ◦ q−11 = q2 ◦m ◦ q−12 . (So the multiplier a is the same.)

Furthermore, if q ∈Möb(Ĉ) satisfies q(x) =∞, q(y) = 0 then the multiplier of q ◦m ◦ q−1 is 1
a

Corollary 4.9. The multiplier is defined up to it’s inverse. Furthermore, if m(z) = az, T (z) = 1
z , then

T ◦m ◦ T−1(z) = 1
az = m−1(z)

This tells us that the standard form for a non parabolic transformation (i.e. any transformation with
2 fixed points) is unique up to the multiplicative inverse of the multiplier - and furthermore, that these
sit in the same conjugacy class, in particular being conjugate by the inversion map.

7Note that even though a Möbius transformations uniquely exists taking (z∗, w,m(w)) 7→ (∞, 0, 1), p is not unique.
This arises from the choice we had for w.
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We can classify further depending on the multiplier. Recall a ∈ C \ {0, 1}.

If |a| = 1, for some θ ∈ (0, 2π) we can write a = eiθ, so the transformation is a rotation clockwise by
angle θ. We call m elliptic and say that q ◦m ◦ q−1 = eiθz is it’s standard form.

The final case is if |a| 6= 1. So a = reiθ for r ∈ R \ {0, 1}, θ ∈ [0, 2π). m is said to be loxodromic with
q ◦m ◦ q−1 = reiθz, θ 6= 0 is it’s standard form. In the special case where θ = 0 (a pure dilation) then
we say m is hyperbolic - having standard form q ◦m ◦ q−1 = rz.

Observe that if m is loxodromic, then it is the composition of dilation by r and a rotation by θ, both
about 0, performed in either order; hence it’s standard form is just the composition of hyperbolic and
elliptic transformations.

Example 4.10. Taking m2(z) = z−2
z−1 as before, because the multiplier is -1, then this is elliptic and m2

is conjugate to a rotation by π.

Now there is a fast method of determining the standard form of any given Möbius transformation.
First we need to introduce the following function

Definition 4.11. For any m = az+b
cz+d ∈ Möb(Ĉ) we define τ : Möb(Ĉ) → C, by τ(m) = (a + d)2. The

respective map for [A]↔ m from PSL(2,C)→ C is tr2 : [A] 7→ (a+ d)2.

The symbol τ is chosen for this function as we are motivated by the trace of a matrix. Note that if
we had defined instead τ(m) = a + d, then this would be ill defined, due to the dual representation of
each map, however τ is well defined as ((−a) + (−d))2 = (a+ d)2.

Using this new function, in [2, pp. 45] you can find the proof for the following:

Proposition 4.12. Let m ∈Möb(Ĉ) \ {id}. Then:

(a) m is parabolic ⇔ τ(m) = 4
(b) m is elliptic ⇔ τ(m) ∈ R and 0 ≤ τ(m) < 4
(c) m is hyperbolic ⇔ τ ∈ R \ (−∞, 4]
(d) m is loxodromic ⇔ τ ∈ C \ [0, 4]

Now we have a very useful tool that enables us to immediately determine the type of a given trans-
formation. We can go further and see that τ determines the conjugacy class entirely.

Lemma 4.13. If f, g, p ∈Möb(Ĉ), then τ(f ◦ g) = τ(g ◦ f) and τ(p ◦ f ◦ p−1) = τ(f).

Proof. (Sketch)
To see τ(f ◦ g) = τ(g ◦ f), use the correspondence with matrices and that tr(AB) = tr(BA) for

matrices A,B. Then, τ(p ◦ f ◦ p−1) = τ(p−1 ◦ p ◦ f) = τ(f)

Due to the second property in 4.13, it it enough to just consider the values of τ on the standard forms.

Now take f, g ∈Möb(Ĉ), satisfying τ(f) = τ(g). First, if τ(f) = 4 = τ(g), then f and g are parabolic.
So they have the same standard form n1 : z 7→ z + 1. So f ∼ g.

Now if τ(f) 6= 4, let α be the multiplier of f , β the multiplier of g. So

τ(f) = τ(g)⇒ (
√
α+

1√
α

)2 = (
√
β +

1√
β

)2 ⇒ α+
1

α
+ 2 = β +

1

β
+ 2⇒ α+

1

α
= β +

1

β

which has solutions α = β and α = 1
β . Then by corollary 4.9, we can see that the standard forms

are either equal (so trivially conjugate) or conjugate by the inversion map, so (as conjugation is an
equivalence relation), f ∼ g.

Coupling this with 4.13, we get that f ∼ g ⇔ τ(f) = τ(g). So the multiplier is completely determined
by τ and vice versa. We state this as a proposition:

Proposition 4.14. f ∼ g ⇔ τ(f) = τ(g). In terms of matrices, given A,B - matrices corresponding to
f, g resp. , then [A] is similar8 to [B] ⇔ tr(A)2 = tr(B)2

8We defined what similarity of elements of PSL(2C) means at the start of 4.1.
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4.3 Back to Matrices

It turns out we can exploit the relationship with matrices further and grow to understand it more in the
process. We seemed to have stumbled upon it purely by chance! For example, what do they represent?
We are used to 2 by 2 matrices acting as linear transformations of R2 or C with real entries. However
we can quickly see this is not the case here; our matrices have complex entries, and consider ( 0 1

1 0 ), the
matrix for the inversion, which is not a linear transformation of C.

You may further ask why this nice correspondence exists. To answer that we must briefly detour to
the world of projective geometry as alluded to earlier, with this section based roughly on [6, pp. 157].

We begin by describing the complex plane in a different and completely new kind of coordinate system
- instead of writing z = x + iy in terms of 2 real numbers, let us write z = α

β , the ratio of 2 complex

numbers. As shorthand we write [α, β] and call these the projective coordinates of z. To ensure that
this ratio is well defined we do not allow [α, β] = [0, 0]. This is very different from the way are used
to writing complex numbers - particularly as the coordinates are not unique; [α, β] = [kα, kβ] for any
k ∈ C \ {0}. To all pairs [α, β] with α ∈ C, β ∈ C \ {0} there exists uniquely one point in C. Note this

excludes the pair [α, 0] (when β = 0) as this corresponds to z = α
0 . However, working instead in Ĉ we

identify [α, 0] with ∞. Thus in this coordinate system the point ∞ is no longer exceptional, it is just a
complex pair (i.e. an element of C2) just like any other. This is much like when we identified ∞ with N
on the Riemann Sphere, but this time from an algebraic point of view, rather then a geometrical one.

We can think of 2 by 2 complex matrices as linear transformations of C2, just in the same way that
2 by 2 real matrices are linear transformations of R2. They map(

α
β

)
7→
(
a b
c d

)(
α
β

)
=

(
aα+ bβ
cα+ dβ

)
But now we have a new way to view this pair, from the perspective of projective coordinates! If we

think of [α, β] as representing z = α
β ∈ Ĉ, and the above linear transformation is interpreted as the non

linear transformation of Ĉ, taking

z =
α

β
7→ aα+ bβ

cα+ dβ
=
aαβ + b

cαβ + d
=
az + b

cz + d

Which is exactly the corresponding Möbius transformation!
Now we understand better why Möbius transformations behave so much like linear transformations

and have such nice matrix correspondence; they are precisely linear transformations, but on the projec-
tive coordinates in C2, not directly on C.

Now let’s put this beautiful new discovery to good use. Without giving a formal proof, by considering
what it means to be an eigenvector, and remembering that in projective coordinates [α, β] = λ[α, β] for
any non-zero λ ∈ C, we see that

Proposition 4.15. z = α
β is a fixed point of m⇔ ( αβ ) is an eigenvector of the corresponding matrix9.

Example 4.16. Let f(z) = 4z + 8i. Then in PSL(2,C) this is10 [A], where A =

(
2 4i
0 1

2

)
.

A has eigenvalues satisfying:

λ2 − λ(a+ d) + 1 = λ2 − 5

2
λ+ 1 = 0

So they are given by the equation

λ± =

5
2 ±

√
( 5
2 )2 − 4

2
=

5
2 ±

3
2

2
so λ+ = 2, λ− =

1

2

Solving Av = λ±v, we find that λ+ and λ− have associated eigenvectors v+ = ( 1
0 ), v− =

(−8i
3

)
.

Then the fixed points are 1
0 =∞, and −8i3 = − 8

3 i.

9Remember this is up to sign, but fine, as Av = λv⇔ (−A)v = (−λ)v
10After we normalise the transformation.
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By looking at fixed points from this point of view there is really no difference between a fixed point
in C or at∞, just as there is no real difference between the north pole and any other point on the sphere.

Can we gain extra information from this alternative formulation of a fixed point? It turns out that
we can, by investigating the value of the eigenvalue.

First we define the matrices of the standard forms.

M1 =

(
1 1
0 1

)
, Ma =

(√
a 0

0 1√
a

)
for a ∈ C \ {0, 1}

So the standard form of a parabolic transformation is [M1] in PSL(2,C), and any other standard
form, with multiplier a, is [Ma] in PSL(2,C).

Now we know given [A] ∈ PSL(2,C) \ {[I2]}, that [A] is similar to either [M1] or [Ma] for some
a ∈ C \ {0, 1}. Similar matrices have the same eigenvalues, and here with our slightly altered definition
the same still holds, but as usual up to the sign of the eigenvalue (λ is an eigenvalue of A ⇔ −λ is an
eigenvalue of −A).

Therefore, we can conclude that the eigenvalues tell us precisely the standard form, and give us the
relationship that the multiplier of the transformation represented by the matrix is a = λ2.

Example 4.17. Consider again f as in 4.16 above. We have already calculated the eigenvalues, and
so can deduce that the multiplier is 4 if we use λ+, and 1

4 if we use λ−. This choice is not an issue as
we know the multiplier is only defined up to it’s inverse11. So this transformation is conjugate to the
standard form n : z 7→ 4z, and is hyperbolic.

We can thus summarise our results as follows:

Type Fixed Points τ Multiplier Class Representative

Parabolic 1 τ = 4 -

(
1 1
0 1

)

Elliptic 2 τ ∈ [0, 4) eiθ s.t. θ ∈ (0, 2π)

(
e
iθ
2 0

0 e−
iθ
2

)

Hyperbolic 2 τ ∈ R \ (−∞, 4] eθ s.t. θ ∈ R \ {0}

(
e
θ
2 0

0 e−
θ
2

)

Loxodromic 2 τ ∈ C \ [0, 4] a s.t. |a| 6= 1

(
λ 0
0 λ−1

)
s.t. λ2 = a

Some texts go even further and define spherical as a subset of elliptical, being those with τ = 0.
These the transformations with multiplier -1, so are conjugate to the standard form sending z 7→ −z, a
reflection in the imaginary axis. Note that z 7→ 1

z is also in this conjugacy class (has τ = 0).

4.4 Normal Form

We alternatively can think about Möbius transformations as iterative maps in terms of their fixed points,
as is done in [6, pp. 169].

Let m ∈Möb(Ĉ) be a non identity map have 2 distinct fixed points, z+, z− (m is any non parabolic
transformation). Now take q = z−z+

z−z− as in section 4.2, a map satisfying q(z+) = 0, q(z−) =∞. We know

11This will always be the case as λ+λ− = det(A) = 1, a property of eigenvalues.
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that q ◦m ◦ q−1 = n , where n : z 7→ az for some multiplier a. Rewriting, as q ◦m = n ◦ q, and w = m(z)
(the image under m) we see:

w − z+
w − z−

= a
z − z+
z − z−

Figure 2: Iterating a loxodromic and hy-
perbolic transformation

Now call w(k) = mk(z), the image of z under k applica-
tions of m, and z0 the starting point. Then m = q−1 ◦ n ◦ q,
mk = (q−1 ◦ n ◦ q)k = q−1 ◦ nk ◦ q, so q ◦mk = nk ◦ q. Thus

w(k) − z+
w(k) − z−

= ak
z0 − z+
z0 − z−

= akC

Where C is a constant.
We can then solve for w(k) to yield:

w(k) =
z+ − akCz−

1− akC

For z0 6= z+, z−, if |a| > 1, then we see that the ak term
dominates, so w(k) 7→ z−, as k 7→ ∞, and if |a| < 1, then
ak 7→ 0 as k 7→ ∞, so w(k) 7→ z+. Note that if |a| = 1, the
limit does not exist. This agrees geometrically, as elliptical
maps just rotate points around the fixed points. In the cases
where z0 = z+ or z0 = z−, then we know these stay put as
k 7→ ∞, being fixed points.

So for non parabolic transformations, points either flow
from one fixed point to the other, or oscillate around them.
In particular, for hyperbolic transformations, these points
move along circles through the 2 fixed points.

Figure 3: Iterating an elliptic transforma-
tion

If instead m(z) = az+b
cz+d is parabolic and has one fixed

point z∗ = a−d
2c ∈ Ĉ, then if z∗ is finite the normal form is

1

w − z∗
=

1

z − z∗
± c so

1

w(k) − z∗
=

1

z(0) − z∗
± kc

where sign of c is positive if a+d = 2, negative if a+d = −2.
If z∗ =∞, then we know that c = 0, and as ad− bc = 1,

then a = d = ±1 so m(z) = z ± b. Hence the normal form
is12

w = z ± b so w(k) = z(0) ± kb

In both of these cases we can see that limk 7→∞ w(k) = z∗.

So for parabolic transformations, all points move towards the fixed point.

4.5 Geometry of the Standard Forms

Finally, we can now visualise what these standard forms look like on the sphere.
For the transformation with 2 fixed points, in all the standard forms that 0 and ∞ are fixed points,

which correspond to the north and south pole on Σ. Then using the normal form above, we see for each
standard form that points move along lines as in [a], [b], and [c] in figure 4. It is interesting that the
name loxodromic derives from the fact that such transformations make constant angles with the lines of
longitude.

For parabolic transformations, the standard form has only∞ as a fixed point at the top of the sphere,
and all points move towards it, in a fashion exhibited in [d], figure 4.

12We also know b 6= 0, as m 6= id.
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Figure 4: The effect of the standard forms on Σ

5 Motions of the Sphere

If you can, cast your mind back to when we described the inversion in terms of a rotation of the Riemann
sphere. Here we see that there was nothing special about the inversion - we can do it for any Möbius
transformation! Additionally, these are the only maps for which this property holds!

This is shown in [3], where the following elegant result is stated and proven.

Theorem 5.1. A complex mapping is a Möbius transformation if and only if it can be obtained by
stereographic projection of the complex plane onto an admissible sphere in R3, followed by a rigid motion
of the sphere in R3 which maps it to another admissible sphere, followed by stereographic projection back
to the plane.

An sphere in R3 is admissible if it’s north pole, N , lies above the xy-plane. For any admissible sphere,
a stereographic projection can be defined as before: for each point P on the sphere, draw the line through
N and P and map this to the intersection of this line with the xy plane. So again N is identified with
∞, and the remainder of the sphere with C. The proof runs as follows:

Proof. (Sketch) We use the fact (similar to 3.5) that any Möbius transformation f can be built from (in
this order), a translation, inversion, dilation, rotation, and a final translation: we can find α, β ∈ C, ρ,
θ ∈ R such that

f(z) =
ρriθ

z + α
+ β (1)

Therefore, we just have to show that for each of these types of map there exists an admissible sphere
S and rigid motion T, such that S′ = TS is also admissible and we can write each as PS′ ◦ T ◦ PS .

For any translation, we can choose S as any admissible sphere, and T to be the same translation
extended to R3. S′ will always be admissible as there is no change in vertical coordinates.

For the other 3 maps, let S be the unit sphere. T for the rotation is also just the rotation extended
to R3. The dilation is more interesting, and we take the corresponding motion as a translation vertically
by ρ − 1. To produce the inversion, as we showed earlier we take T to be the rotation around the real
axis by an angle of π.
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Then to write (1) in the form f = PS′ ◦ T ◦ PS , we take S as the unit sphere with centre −α, T to
be the composition of a translation by α, a rotation by π about the real axis, a rotation by θ about the
axis orthogonal to the xy-plane, a translation upwards by ρ− 1, and finally a translation by β.

Figure 5: This result visualised
in Möbius Transformations Re-
vealed

A beautiful visual representation of this result is shown in the video
Möbius Transformations Revealed13, which was created alongside [3]
by the authors, bringing this theorem to life.

We can see immediately that for a given Möbius transformation, the
admissible sphere, S, and rigid motion T , are not necessarily unique.
For instance take f = id. Then we can let T = I, then for any admis-
sible sphere S, PI(S) ◦ I ◦ PS = f .

However, if we first fix the admissible sphere S, then we get unique-
ness of the rigid motion T .

Theorem 5.2. Let f be a Möbius transformation. For any admissible
sphere S, there exists a unique rigid motion T such that PT (S)◦T ◦PS =
f .

This can be found in [8] and is the main result of the paper. We
can still ask more questions though. For example, one open question is
given a Möbius transformation, what is the relationship, if any, between
the choice of the sphere and T?

6 Further Reading

To whet your appetite for further exploration of these wonderful maps,
here are a few amazing results with directions to where you can find
more information.

From [6, pp. 123] we see that the complex mappings that correspond to Lorentz transformations of
space-time are exactly the Möbius transformations, and conversely, that each Möbius transformations
yields a unique Lorentz transformation.

Furthermore, the group properties of Möb(Ĉ) are extensive: for example, SO(3) - the group of

isometries of the sphere, is isomorphic to a subgroup of Möb(Ĉ) (see [1, pp. 30]) , and the subgroup
of Möbius transformations with real coefficients are precisely the motions of 2 dimensional hyperbolic
space [6, pp. 313].
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