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1 Introduction

Theorem 1.1 (Brun’s Theorem). The series∑
p, p+2 prime

1

p

of reciprocals of prime twins is convergent (or perhaps finite).1

In 1919, Viggo Brun published a paper providing a proof for the theorem
above, which was but another step in understanding twin primes.2 The proof
made use of one of many techniques known a sieves to find an upper bound
on the set A = {n(n − 2) : 1 ≤ n ≤ X}. Sieve Theory is the collection
of these methods and techniques used in number theory to count or bound
the number of primes (this need not be all the primes but a subset e.g.
P = {p : p ̸≡ 3(mod4)}) in any given set of positive integers.

The object of this essay is to discuss the construction of sieves and assess
their effectiveness ultimately making use of certain sifting arguments of Brun
to prove the above theorem. This will begin with the sieves of Eratosthenes
and Legendre (the first and simplest modern sieve) following naturally on to
Brun’s pure sieve which is based on Legendre’s sieve but lessens the trouble
faced with the error term in the former. The thing all these sieves have
in common is that they are known as combinatorial as they make use of
inclusion-exclusion by way of the Möbius function. However, there exist
other sieves such as the Selberg, Linear and Large sieves which produce
more accurate results (in that the error term can be kept much smaller) and
will be briefly discussed towards the end.

Sieves have many applications within analytic number theory, as they
can be used to prove many results which can’t easily be done with ordinary
analytic methods as well as in more practical settings such as public-key
cryptography which involves factorising large numbers into prime factors3.

1.1 Motivation

Primes have for over 3000 years both intrigued and baffled many as people
have tried to identify and prove patterns. Two such patterns that are yet to
be proven are the twin prime conjecture (there are infinitely many primes,
p s.t. p + 2 is prime) and Goldbach’s conjecture (every even integer can
be expressed as the sum of 2 primes). When reading work done towards
understanding these problems, I found that mathematicians frequently made
use of sieve arguments in their proofs (notably Chen’s theorem4, a weaker

1As stated on pg. [8].
2Brun [2], alternative proofs given in Greaves [8] and [7].
3The role of sieves would be to obtain information on distribution of primes so that

less computational power is used in searching for prime factors.
4Chen, 1966 [3] and 1973 [4].
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form of Goldbach conjecture). The primary focus of this essay is to prove
Brun’s Theorem which is especially interesting as we know that the sum of
the reciprocol of all primes diverges.

1.2 Sieve of Eratosthenes

Around 300 BCE Eratosthenes thought of a method sifting the set of positive
integers up toX leaving only the primes >

√
X with the end goal of counting

the number of primes left over (Friedlander and Iwaniec, 2010 pg. xi [6]).
Take a 6×6 grid of integers up to 36 (Table 1) (Greaves, 20015). Starting at
2 sieve is done by crossing out all multiples of the integer then moving on to
the next integer not crossed out. The process terminates once all multiples
of the largest prime ≤

√
X has been reached.

Table 1: End result of Eratosthenes sieve on number grid.

1 (2) (3) (4) (5) �6
7 8 9 ��10 11 ��12
13 14 ��15 16 17 ��18
19 ��20 21 22 23 ��24
25 26 27 28 29 ��ZZ30
31 32 33 34 35 ��36

However, the goal was to count the number of primes in the set; ideally
by taking the cardinality of the set and subtracting the number of crossed
out numbers. However, there are multiple numbers crossed out more than
once. In order to get around this we need to add back in the number of
integers crossed out twice (when counting, we can only count the number
of crosses so will count integers with two prime factors twice), but then we
know that integers with 3 prime factors have been counted C3

1−C3
2 = 0 times

so we need to then subtract the number of integers crossed out thrice. This
process, known as inclusion-exclusion, continues until we reach the number
of primes z ≤

√
X we wish to remove (in the case of the above example, 3).

2 Legendre’s Sieve

Legendre revisited the idea of Eratosthenes in the 19th century and for-
malised this process (Friedlander and Iwaniec, 2010 pg. 35-376) using the
möbius function, µ(d), to perform the inclusion-exclusion.

5Table and explanation from pg. 8-9 in [8].
6Notation taken from Chapter 5 of Opera de Cribro (pg. 35-37) on ”Sieve Principles

and Terminology” [6]

2



Definition 2.1 (The Möbius function). (Greaves, 2001 pg. 9 [8], Friedlan-
der and Iwaniec, 2010 pg. 2 [6]) For d ∈ Z, d > 0 the Möbius function, µ(d),
is defined by the formula,

µ(d) =


1 when d = 1

(−1)ν(d) when d is the product of distinct primes

0 when d has a repeated prime factor

where ν(d) ≥ 0 counts the number of distinct prime factors of d.

The sieve is defined by a function (the sifting function), S(A,P, z), where
A is the sifting sequence (the sequence of non-negative integers to which the
sieve is being applied), P is the sifting set (set of primes which are being
sifted out of A) and z is the sifting level. When formulating the sieve, z is
used to define the sieving range which is the number of primes dividing,

P (z) =
∏
p∈P
p<z

p

which will frequently be shortened to P where z is not specified. This gives
us the job of finding functions of the form,

S(A,P, z) =
∑
n≤x

(n,P (z))=1

an.

Applying this to Eratosthenes’ sifting idea in a more general case, we can
state,

S(A,P) = [X]−
∑
p<z

[
X

p

]
+

∑
p1<p2<z

[
X

p1p2

]
−

∑
p1<p2<p3<z

[
X

p1p2p3

]
− ...

=
∑
d|P

µ(d)

[
X

d

]
where A = {n ∈ Z : 1 ≤ n ≤ X}, P = {all primes}, z =

√
X and the

square brackets represent the floor function (maps a positive real number
to the largest integer less or equal to the number). This appears to work.
However it relies on the use of the floor function which isn’t practical. To
get around this, we separate the real number into integer and real number
in the interval [0, 1): X

d =
[
X
d

]
+
{
X
d

}
. Using big O notation we can then

say X
d =

[
X
d

]
+ O(1) which can then be substituted into the formula for

S(A,P) giving,

S(A,P) =
∑
d|P

µ(d)
X

d
+
∑
d|P

O(1) =
∑
d|P

µ(d)
X

d
+O

∑
d|P

1


=
∑
d|P

µ(d)
X

d
+O

(
2π(z)

)
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the last line coming from the fact that d = p1p2p3... is a product of distinct
primes in the product P (z) each of which are either factors of d or not (2
options).

2.1 Greater Generality

We start by redefining the sifting function S.

Definition 2.2. (Greaves, 2001 pg. 13 [8])

S(A) =
∑
d|A

µ(d)

We then write
S((a, P )) := S(a, P ) =

∑
d|(a,P )

µ(d)

where P is defined as above and (x, y) is the greatest common divisor of x
and y.

The following Lemma is also crucial in generalising this sieve for appli-
cation.

Lemma 2.1 (Characteristic property of µ). 7

∑
d|(a,P )

µ(d) =

{
1 if (a, P ) = 1

0 otherwise.

Proof. Let (a, P ) = 1 ∑
d|(a,P )

µ(d) = µ(1) = 1

as we know d|1 =⇒ d = 1.
Suppose (a, P ) ̸= 1,

we can say that (a, P ) = dm where m ∈ N P is a product of distinct
primes so (a,P) must be a product of distinct primes. So we can write
(a, P ) = p1p2...pn for some n ∈ N where p1, ..., pn are distinct primes. We
know that µ(d) = 1 if n is even and µ(d) = −1 if n is odd, so we want to
show that there are an equal number of even subsets of {p1, ..., pn} as there
are of odd subsets.
Case 1: n is even

There are

(
n
k

)
subsets of size k so we want to show

n/2∑
k=1

(
n
2k

)
=

n/2−1∑
k=0

(
n

2k + 1

)
7Stated as definition on pg. 13 of [8].
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n/2∑
k=1

(
n
2k

)
=

n/2∑
k=1

(
n− 1
2k

)
+

(
n− 1
2k − 1

)

=

n/2∑
k=1

(
n− 1
2k

)
+

(
n− 1
2k − 1

)

=
n∑

k=1

(
n− 1
k

)
=

(
n− 1
1

)
+

((
n− 1
2

)
+

(
n− 1
3

))
+ ...+

+

((
n− 1
k − 2

)
+

(
n− 1
k − 1

))
+

(
n− 1
n

)

=

n/2−1∑
k=0

(
n

2k + 1

)

with the last line coming from the identity,

(
n
k

)
=

(
n− 1
k

)
+

(
n− 1
k − 1

)
from

Pascal’s triangle.
Case 2: n is odd

Proof identical to proof for n even but with the limits of the sums altered
i.e. to prove

(n−1)/2∑
k=1

(
n
2k

)
=

(n−1)/2∑
k=0

(
n

2k + 1

)

We then define

Ad = {a ∈ A : a ≡ 0 mod d}

and
S(A, P ) =

∑
a∈A

S(a, P )

From this, we can write,

S(A, P ) =
∑
a∈A

∑
d|a;d|P

µ(d) =
∑
d|P

µ(d)|Ad|

sometimes known as Legendre’s identity (Greaves, 2001 pg. 13-14 [8]).
With this knowledge, we can now see how this sieve can be applied in

the following example:
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Example 2.1. (Greaves, 2001 pg. 14-15 [8]) We want to find an inequality
approximating the number of primes in the interval (Y −X,Y ] (above, we
used the sieve in the case where Y = X)

Let
A = {a ∈ Z : Y −X < a ≤ Y }

We can then write,

|Ad| =
[
Y

d

]
−
[
Y −X

d

]
=

X

d
+O(1)

with the last equality coming from the fact that
{
Y−X

d

}
−
{
Y
d

}
lies in the

interval (−1, 1).
Applying Legendre’s identity and the identity,∑

d|P

µ(d)

d
=
∏
p<z

(
1− 1

p

)
,

we get,

S(A, P ) = X
∑
d|P

µ(d)

d
+O(1)

= X
∏
p<z

(
1− 1

p

)
+O

(
2π(z)

)

= X
∏
p<z

( ∞∑
r=1

1

pr

)−1

+O
(
2π(z)

)

≤ X

(∑
n<z

1

n

)−1

+O
(
2π(z)

)
≤ X

log z
+O

(
2π(z)

)
where the last line comes from the fact that the harmonic series is strictly
less than the integral of 1

n . Substituting z = log(X), we get,

π(Y )− π(Y −X) = O

(
X

log log(X)

)
with x ≥ 3 to ensure denominator is positive.

There is, however, a major problem with this sieve, so large that it can’t
really be used in any practical setting and can be seen in both examples.
This is found in the remainder term, O

(
2π(z)

)
which gets larger than the

[X] as z gets large which isn’t possible and will give us an erroneous result.
This restricts the sieving range massively to z = logX (Greaves, 2001 pg
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11, 71-72 [8]). This restriction is incovenient and doesn’t allow for many
results to be proven, a problem Brun managed to improve on by altering
Legendre’s sieve by truncating the each of the sums to limit the remainder
terms.

3 Brun’s Pure Sieve

Brun’s pure Sieve was the first great development in Sieve Theory since
Legendre developed the ideas of Eratosthenes. It is another combinatorial
Sieve which as mentioned above involves truncating the sums of the Legendre
sieve by only sifting out integers d such that ν(d) < k giving a bound on the
value of π(X), which can either be constructed using and extra condition
in the limit of the sums or by replacing µ(d) with a sequence of functions
Λ = λd defined by,

λd =

{
µ(d) if ν(d) < k

0 if ν(d) ≥ k
.8

Brun showed that whether this is a upper or lower bound is determined solely
by whether k is odd or even corresponding to a lower and upper bounds
respectively. The repeated truncation produces about a bound on pi(z) for
which, the remainder/error term can be controlled better as it contains fewer
terms. As the error term is ultimately smaller when using this sieve, the
sifting range, z, now satisfies z ≤ X1/cκ log logX where c ≈ 3.591... is the
positive constant for which (c

e

)c
= e.9

and κ is the sifting density which, as the name suggests, is a weighted
average of the number of residue classes sifted out by each prime (that is,
g(p)p equals κ on average where g(p) is a sort of probability function giving
the ”chance of hitting” a multiple of a given prime p).10

3.1 Brun’s Theorem

We restate Brun’s Theorem,

Theorem 3.1 (Brun’s Theorem). The series∑
p, p+2 prime

1

p

converges (or terminates).

8Friedlander and Iwaniec, 2010 [6]
9Greaves, 2001 pg. 81 [8],

10Friedlander and Iwaniec, 2010 pg. 42 [6].
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As mentioned in the Introduction, the proof (Gel’fond, A.O. and Linnik,
Yu.V, 1966 p 101-10511) of this will involve finding an upper bound for π2(X)
defined as being the number of twin primes not greater than X which we
will find to be,

π2(X) < c
X

log2X
(log logX)2

. We do this by sifting the set A = {n(n− 2) : 1 ≤ n ≤ X}, in an attempt
to remove all primes ≤ z for some z ≤

√
X.

Proof. We can write as when starting with the sum of Eratosthenes

π2(X) = X −
∑

p|P, p∈A

1 +
∑

p1p2|P, p1,p2∈A

1− ...

We can obtain an upper bound on this by taking a partial sum stopping
after an even number of terms12 i.e.

π2(X) ≤ X −
∑

p|P, p∈A

1 +
∑

p1p2|P, p1,p2∈A

1− ...+
∑

p1...p2k|P, p1,...,p2k∈A

1

noting that each of the products of primes p1...pl for 1 ≤ l ≤ 2k are counted
exactly once.

Let d = p1p2...pl (p1, ..., pl distinct =⇒ µ(d) ̸= 0). We wish to evaluate

Sd =
∑
d∈A

1.

Case 1: d ≡ 1 (mod 2)
The sum,

Sd =
∑
d∈A

1,

in this case counts the solutions of the congruence,

n(n+ 2) ≡ 0 (mod d).

This quantity equals the number of solutions of the systems equations of the
form,

n ≡ 0 (mod d1)
n+ 2 ≡ 0 (mod d2)

}
where d = d1d2. Each system will have,

X

d
+ θ

11Proof heavily based on that given in [7].
12By similar logic, a lower bound could be found by stopping after an odd number of

terms.
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solutions where |θ| ≤ 1. Denoting the number of systems by τ(d) gives,

Sd = X
τ(d)

d
+ θτ(d).

Case 2: d ≡ 0 (mod 2)
The sum,

Sd =
∑
d∈A

1

now counts the solutions of the congruence,

n(n+ 1) ≡ 0
(
mod

d

2

)
for integers n ≤ X

2 giving,

Sd = X
τ
(
d
2

)
d

+ θτ

(
d

2

)
.

We can then write,

Sd = X
τ ′(d)

d
+ θτ ′(d).

where

τ ′(d) =

{
τ, if d ≡ 1 (mod 2)

τ, if d ≡ 0 (mod 2)

Now returning to the upper bound on π2(X), we have,

π2(X) ≤ X

1−
∑
p|P

τ ′(p)

p
+
∑

p1p2|P

τ ′(p1p2)

p1p2

−...+
∑

p1...p2k|P

τ ′(p1...p2k)

p1...p2k

+
∑
p|P

τ ′(p) +
∑

p1p2|P

τ ′(p1p2)

+ ...+
∑

p1...p2k|P

τ ′(p1...p2k)

where the final 2k sums come from the fact that |θ| ≤ 1.
We then want to show the result:∑

p1...pr|P

τ ′(p1...pr) ≤ 2rCπ(z)
r < 2r

πr(z)

r!

where Ca
b is a choose b. The first inequality comes from considering the

number of ways of composing a number d := p1...pr consisting of r distinct
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prime factors. So the sum
∑

p1...pr|P 1 evaluates to C
π(z)
r . If we then consider

the number of ways of partitioning the set {p1, ..., pr} into to two parts, we
see that each pi is either in the first part or the second part (τ(d) gives
the number of systems of equations, each containing two equations, so we
must factorise d into two factors each a product of distinct prime factors).
This gives that τ ′(p1...pr) = 2r ∀p1...pr|P from which we can state the first
inequality.

The second inequality follows directly from the definition of the binomial
coefficient in that Cn

k = n!
k!(n−k)! <

nk

k! for all non-negative integers k ≤ n.

Using this and assuming z > 2 =⇒ π(z) ̸= 1 we can deduce,∑
p|P

τ ′(p)+
∑

p1p2|P

τ ′(p1p2)+...+
∑

p1...p2k|P

τ ′(p1...p2k) < π2k(z)
∑
r≤2k

2r

r!
≤ 9π2k(z)

with the last inequality coming from the fact that limk→∞
∑

r≤2k
2r

r! = e2.
Next we need to address the rest of the sum defining π2(x) i.e.

−
∑

p1...p2k+1|P

τ(p1...p2k+1)

p1...p2k+1
+

∑
p1...p2k+2|P

τ(p1...p2k+2)

p1...p2k+2
− ... = T2k

If we add T2k to the first term of the sum,

X

1−
∑
p|P

τ ′(p)

p
+
∑

p1p2|P

τ ′(p1p2)

p1p2

−...+
∑

p1...p2k|P

τ ′(p1...p2k)

p1...p2k

+
∑
p|P

τ ′(p) +
∑

p1p2|P

τ ′(p1p2)

+ ...+
∑

p1...p2k|P

τ ′(p1...p2k),

the term ends up equal to(
1− 1

2

) ∏
3≤p≤z

(
1− 2

p

)
.

This can be shown by noticing that τ ′(d) = 2ν(d) where ν, as before, is
defined as being the number of prime factors of d (ν(d) = 0 if d has repeated
prime factors).

By induction, we can show

∑
p1...pr|P

1

p1...pr
≤

(∑
p≤z

1
p

)r
r!

.
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Since we know that
∑

p≤z
1
p = log log z + c, we can write∑

p1...pr|P

1

p1...pr
<

(log log z + c)r

r!
.

From this we deduce that,

T2k ≤
∑

r≥2k+1

(2 log log z + 2c)r

r!
.

Using

r! >
(r
e

)r
,

we can then state (substitution),

T2k ≤
∑

r≥2k+1

(
2e log log z + 2ec

r

)r

.

From here, we can set k = 2e log log z + 2ec as well as note that T2k ≤
2−2k < 1

log4 z
.13 We can therefore write, starting with the sums of before,

1−
∑
p|P

τ ′(p)

p
+
∑

p1p1|P

τ ′(p)

p
+ ...+

∑
p1...p2k|P

τ ′(p1...p2k)

p1...p2k

=
∑
d|P

µ(d)
τ ′(d)

d
− T2k ≤

∏
p≤z

(
1− τ ′(p)

p

)
+

1

log4 z

=
1

2

∏
3≤p≤z

(
1− 2

p

)
+

1

log4 z

where the last equality comes from using τ(d) = 2ν(d) which equals 2 when
d is prime.

We finally return to our orginal upper bound inequality (after having
substituted τ ′ function in) and substitute the above result in addition to
the fact that

∑
p|P τ ′(p) +

∑
p1p2|P τ ′(p1p2) + ... +

∑
p1...p2k|P τ ′(p1...p2k) <

9π2k(z). This gives,

π2(X) <
X

2

∏(
1− 2

p

)
+

X

log4 z
+ 9π2k(z).

We need to satisfy π2k(z) < X
log4 z

and it ends up being enough to take

z = X1/2k. We can show that∏
3≤p≤z

(
1− 2

p

)
<

c0

log2 z

13The first inequality can be proven through the substitution of k followed by induction.
The second inequality isn’t as obvious and it’s proof has been omitted.
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where c0 is an absolute constant, using Merten’s third theorem (Hardy,
Wright, 1975 pg. 351 [9]),

∏
p≤z

(
1− 1

p

)
∼ e−γ

log z
=⇒

∏
p≤z

(
1− 1

p

)
<

e−γ

log z

for some constant b and where γ ≈ 0.561459... is the Euler-Mascheroni
constant. To do this, we take the square of both sides of the second inequality
and compare term wise,∏

p≤z

(
1− 2

p

)
<
∏
p≤z

(
1− 2

p
+

1

p2

)
<

c0

log2 z

by setting e−2γ = c0. Using the inequality,
∏

3≤p≤z

(
1− 2

p

)
< c0

log2 z
, and

that π2(X) < X
2

∏(
1− 2

p

)
+ X

log4 z
+9π2k(z), we can show π2(X) < c X

log2 X
(log logX)2.

The proof of this has been omitted as it is merely the result of repeated sub-
stitution and algebraic manipulation based on results already given.

From this statement, Brun’s Theorem follows as we can write (Greaves,
2001 p 8514), ∑

2k<p≤2k+1

p+2 prime

1

p
≪ 2

(
log log 2k+1

log 2k+1

)2

.

4 Conclusion

Brun’s theorem was an interesting leap in the understanding of twin primes
(of course if the twin prime conjecture doesn’t hold, we get that the series
terminates), but it was only the beginning of sieves being used to prove
otherwise challenging results in analytic number theory, the most notable
example being Chen’s theorem (an additive result stating that every even
integer can be expressed as the sum of a prime and an integer with at most
2 prime factors) – essentially a weaker form of the Goldbach Conjecture.

As mentioned before, all sieves discussed in the essay are of combinatorial
type meaning that they make use of inclusion-exclusion. However, sieves
do not have to use inclusion-exclusion in this way and the results suggest
that these approaches tend to produce more accurate bounds. The first
sieve created in one of these new ways was the Selberg sieve developed
in 1947. The fundamental idea is that the function µ(d) is replaced by a

14Final step in proof given in [8].
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pair of functions λ±
D satisfying the inequality

∑
d|A λ−

D(d) ≤
∑

d|A µ(d) ≤∑
d|A λ+

D(d) where A|P . It is essentially an upper bound sieve satisfying,

S(A, P (z)) ≤
∑

d|(A,P (z)

λ+
D(d).

Care must be taken to keep d < D sufficiently small to avoid the error terms
faced in previous sieves. In order to do this, Selberg ensured that the λ+

D

function satisfied15

∑
d|A

λ+
D(d) =

 ∑
d1<

√
D

λ(d1)

2

.

What followed were a series of new more effective sieves which continue
to be used both within number theory and in areas such as cryptography, in
particular public-key cryptography as the primes dealt with are very large
and the aim is to decrease the computing power required for instance to
find such primes. Despite this, within sieve theory, there lie many unsolved
problems. For instance, applying the ideas of the Selberg sieve to find a
lower bound

S(A, P (z)) ≥
∑

d|(A,P (z)

λ+
D(d)

has yet to be given a complete solution. Another problem within sieve theory
is the Parity problem. This states:

”If A is a set whose elements are all products of an odd number of primes
(or are all products of an even number of primes), then (without injecting
additional ingredients), sieve theory is unable to provide non-trivial lower
bounds on the size of A. Also, any upper bounds must be off from the truth
by a factor of 2 or more.” (Tau, Terence, 2007 [1])

Work has been done by Iwaniec and Friedlander since 1996 to find
”parity- sensitive” sieves which aim to lower the barrier of the parity problem
something they succeeded in doing when they proved Friedlander-Iwaniec
Theorem, that is there are infinitely many primes of the form x2 + y4 using
these new methods. These advances are but glimpse of what is to come in
our understanding of prime numbers (Friedlander, Iwaniec, 1997 [5]).

15(Greaves, 2001 pg. 41 [8])

13



5 Bibliography

References

[1] Open question: The parity problem in sieve the-
ory. https://terrytao.wordpress.com/2007/06/05/

open-question-the-parity-problem-in-sieve-theory, June 2007.
Accessed on 25 April 2024.
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