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1 Introduction

The motivation for this essay orginates from two distinct places. The first is the idea of a nowhere dense set,
a notion that was briefly introduced in Norms, Metrics and Topologies but not further expanded on. The
second being a question I had asked myself in first year, “what function is continuous on the rationals and
discontinuous on the irrationals?” After looking into nowhere dense sets in a bit more depth I discovered
that they could be used to answer my question, as well as show several other interesting results. The aim
of this essay is to present some of these examples. We start by proving the Baire category theorem, a very
powerful theorem that we will employ as our main tool to understanding first category sets.

2 Baire category theorem

Definition 2.1. Given a metric space (X, d), a subset A is called dense in X, if A = X.

Put otherwise, A is dense in X if and only if A ∩ E ̸= ∅ for every non-empty open set E.

Definition 2.2. Given a metric space (X, d), a subset A is called nowhere dense in X if (A)
o
= ∅.

In other words, A is nowhere dense in X if and only if it is contained in a closed set with empty interior.

It follows immediately from the definition that a subset of a nowhere dense set is nowhere dense. In addition,
the closure of a nowhere dense set is nowhere dense. Please refer to Appendix A for some equivalent
statements of these definitions that we shall use throughout.

Proposition 2.3. Let X be a metric space. The finite union of nowhere dense sets remains nowhere dense
in X.

Proof. It is enough to prove the statement for two nowhere dense sets A1, A2. It is clear from Lemma A.2
that U1 = X \ A1 and U2 = X \ A2 are dense and open. The set U1 ∩ U2 is trivially open. We claim it is
also dense, so let E ⊂ X be a non-empty open set. Note that U1 ∩E is open and non-empty (as U1 is dense)
and as U2 is also dense, we have that U2 ∩ (U1 ∩ E) is non-empty too. Our choice E was arbitrary and as
(U2∩U1)∩E ̸= ∅, the claim is true. By De Morgan’s Law of Union we have that U1∩U2 = X \((A1)∪(A2))
is dense. Appealing to Lemma A.2 again gives that A1 ∪ A2 is nowhere dense. To conclude note that
A1 ∪A2 ⊂ A1 ∪A2 = A1 ∪A2 and so A1 ∪A2 is nowhere dense.

One may naively assume that the union of countably many nowhere dense remains nowhere dense as well.
However, a simple counterexample is to take X = R. The set Q is a countable union of nowhere dense sets
(the rationals are an enumerable union of singletons and singletons are nowhere dense in R ). Yet Q is not
nowehere dense

(
(Q)

o
= Q = R

)
. This example shows the need to define a new class of sets.

Definition 2.4. Given a metric space (X, d), a subset A is said to be,

1. First category in X if it can be represented as a countable union of nowhere dense sets.

2. Second category in X if it is not of first category.

3. Residual in X if it is the complement of a first category set.

It is important to note that it is not immediate from the definition that, a priori, a residual set cannot be
also of first category.

Theorem 2.5. Let X be a metric space. Then,

1. Any subset of a set of first category remains of first category.

2. The union of countably many first category sets is also of first category.
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Proof.
(1): Let A be a set of first category. We have a countable collection of nowhere dense sets denoted by En

such that A =
⋃

n∈NEn. Let B ⊂ A, we have:

B = A ∩B =

(⋃
n∈N

En

)
∩B =

⋃
n∈N

(En ∩B).

It follows that B can written as the countable union of nowhere dense sets since (En∩B) ⊂ En and a subset
of a nowhere dense set is nowhere dense.

(2): Let {An : n ∈ N} be countable collection of first category sets. So we have that each An =
⋃

j∈Jn
En,j ,

where the En,j
′s are all nowhere dense and Jn is a countable indexing set for all n ∈ N. This yields:

A =
⋃
n∈N

An =
⋃
n∈N

( ⋃
j∈Jn

En,j

)
.

Since the countable union of countable sets is countable we have shown that A is of first category.

We now introduce the main result that we will use throughout the remainder of the essay. It was first proven
for Rn in 1899 by René-Louis Baire. The more general statement for metric spaces was first proven in 1914
by Felix Hausdorff.

Theorem 2.6 (Baire Category Theorem). Baire (1899) If X is a complete metric space we have the fol-
lowing:

1. Every residual set in X is dense in X.

2. For every countable family of dense open sets {Gn} we have
⋂

n∈NGn is dense in X.

3. For every countable family of closed sets {Fn} such that X =
⋃

n∈N Fn we have
⋃

n∈N (Fn)
o
is dense

in X.

Remark. Statement 1 of the theorem is equivalent to first category sets having empty interior.

Proof. Let A be a first category subset of X and by Lemma A.1 We have:

X \A = X ⇐⇒ X \X \A = ∅ ⇐⇒ Ao = ∅.

Remark. Statement 3 of the theorem tells us that tells us that a complete metric space is necessarily second
category in itself.

Proof. This follows by noting that statement 3 can be weakened to saying that there exists at least one Fj

which has nonempty interior.

This also tells us that in complete metric spaces residual sets must be second category as well as dense since
otherwise we would contradict statement 3.

To prove the Baire category theorem we will require a Lemma and the following Theorem, first proven by
Georg Cantor.

Lemma 2.7. The boundary of a closed set is nowhere dense.

Proof. Let A be closed and recall that the boundary is closed. It is enough to show that (∂A)
o
= ∅. Let

U ⊂ ∂A be open. Note that ∂A ⊂ A = A implying that U ⊂ A. We also know that U ⊂ Ao since U is open.
We must have then that U ⊂ ∂A ∩Ao =⇒ U ⊂ A \Ao ∩Ao = ∅. Hence U = ∅.
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Definition 2.8. If A is a non empty subset of some metric space (X, d) then the diameter of A is given by

diam(A) = sup{d(x, y) : x, y ∈ A}.

Theorem 2.9 (Cantor’s Intersection Theorem). Let X be a complete metric space and let (Fn) a decreasing
sequence of nonempty closed subsets of X with diam(Fn) → 0. Then, there exists a point x ∈ X such that⋂

n∈N
Fn = {x}, thus

⋂
n∈N

Fn ̸= ∅.

Proof. (Sokal 2012, p. 4) For each n ∈ N choose xn ∈ Fn. Since (Fn) is decreasing, for all i ≥ n we have
xi ∈ Fn. The sequence (xn) is Cauchy since if m,n ≥ N we have d(xm, xn) ≤ diam(Fn) which tends to
zero as N → ∞. As X is complete the sequence (xn) has a limit which we will call x. Note that xn ∈ Fn

for all n ≥ N and as Fn is closed we see x ∈ Fn. As this is true for all N we have that x ∈
⋂

N∈N Fn. We
can conclude by noting that diam(

⋂
N∈N Fn) ≤ infN≥1 diam(FN ) = 0, which implies that

⋂
n∈N Fn = {x} as

required.

With this theorem we are well poised to complete the proof of the Baire Category Theorem.

Proof. The proof follows the one given in (Giles 2000, p. 142) with alterations made to fill the gaps left by
the author in showing the statements are equivalent. The large unions and intersection symbols in this proof
should be taken to be countable. Ideally we would like to only have to tackle one of the three results. So
lets first show that they are all equivalent.

(1) ⇒ (3): Fn is closed so by Lemma 2.7 we have that ∂Fn is nowhere dense, hence
⋃
∂Fn is of first category

in X. Using our assumption that every residual set is dense we have that X \
⋃
∂Fn is dense in X. Again

using the fact that Fn is closed we have that ∂Fn = Fn \ (Fn)
o
. We now claim X \

⋃
∂Fn ⊂

⋃
Fn

o. To show
this take some x ∈ X \

⋃
∂Fn, since X =

⋃
Fn we know there must exist some n ∈ N such that x ∈ Fn. See

that this x /∈ ∂Fn for all n ∈ N. Hence x ∈ Fn \ ∂Fn = Fn
o ⊂

⋃
Fn

o. Our choice of x was arbitrary so we
must have X \

⋃
∂Fn ⊂

⋃
Fn

o. It follows immediately that
⋃
Fn

o is dense in X.

(3) ⇒ (2): We can express X as follows X = (
⋂
Gn) ∪ (

⋃
(X \ Gn)), to see why note that the RHS will

contain every x that is not in Gn for all n ∈ N and these missing x clearly lie in LHS. We have X to be the
union of countably many closed sets. By (3) we have (

⋂
Gn)

o
∪ (
⋃
(X \Gn)

o
) to be dense in X. However

since Gn is dense in X by Lemma A.4 we have that (X \Gn)
o
= ∅. Hence (

⋂
Gn)

o
must be dense in X.

Which implies that
⋂
Gn is dense in X. To see this we prove the contrapositive,

⋂
Gn not dense in X

⇒ (
⋂
Gn)

o
not dense in X. By the assumption we have

⋂
Gn ̸= X. Since (

⋂
Gn)

o
⊂
⋂
Gn we see that

(
⋂
Gn)

o
⊂
⋂
Gn =

⋂
Gn ̸= X. Hence (

⋂
Gn)

o
is not dense in X.

(2) ⇒ (1): We begin by considering countable {En} nowhere dense sets in X, by definition
⋃
En is of first

category in X. By Lemma A.2 we have that X \ En is both open and dense in X and therefore by the
assumption we have that

⋂
(X \ En) to be dense in X. Showing that

⋂
(X \ En) ⊂ (X \

⋃
En) would

conclude the proof since we would then have that (X \
⋃
En) is dense in X. To prove the claim take some

arbitrary x ∈
⋂
(X \En). We have that x ∈ (X \En) for all n ∈ N, equivalently, for all n ∈ N x /∈ En. Since

En ⊂ En it follows that for all n ∈ N x /∈ En. But then x /∈
⋃
En and so x ∈ (X \

⋃
En) with the result

following since x was chosen arbitrarily.

We now directly prove that in a complete metric space we have (3)
Consider a countable family of dense open sets {Gn} in X. We will show that for some arbitrary x ∈ X and
r > 0, we have (

⋂
Gn) ∩ B(x, r) ̸= ∅.

Each Gi is dense in X, so starting with i = 1 we have that there exists x1 ∈ G1 ∩ B(x, r) such that if we
choose 0 < r1 <

r
2 then we have

B(x1, r1) ⊂ G1 ∩ B(x, r).
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We see that since G2 is dense in X there exists x2 ∈ G2 ∩ B(x1, r1) such that if we now choose 0 < r2 <
r
4

we have that
B(x2, r2) ⊂ G1 ∩G2 ∩ B(x, r) ∩ B(x1, r1).

Now proceeding inductively we have that there exists xn ∈ Gn ∩ B(xn−1, rn−1) such that for 0 < rn <
r
2n

we have that
B(xn, rn) ⊂ G1 ∩G2 ∩ . . . ∩Gn ∩ B(x, r) ∩ B(xn−1, rn−1).

Note that we now have a decreasing sequence of closed subsets whose diameters tend to zero, namely(
B(xn, rn)

)∞
0

which, alongside the fact we are working in a complete metric space, allows us to utilise

Cantor’s intersection theorem .That is, there exists some y ∈ X such that y ∈
⋂

B(xn, rn). But then we
have that y ∈

⋂
Gn ∩ B(x, r) thus showing it is non empty as required.

3 Transcendence

The Baire category theorem is an existence theorem. That is, if we can show that the set of numbers in a
given interval which do not have a certain property is a set of first category. Then we know that there must
exist points of that interval that do have the wanted property and in fact,“most” points of the interval have
the property.
To this end we begin by showing the existence of transcendental numbers and the fact that almost all
numbers are transcendental

Definition 3.1. A number α ∈ C is called algebraic if it satisfies an equation of the form

k0 + k1α+ k2α
2 + ...+ knα

n = 0

with integer coefficients, not all zero. Any number that that is not algebraic is called transcendental.

Definition 3.2. The degree of an algebraic number α is the smallest n ∈ Z+ such that α satisfies an equation
of degree n.

For example any rational number p/q is algebraic with degree 1 (qx − p),
√
3 is algebraic with degree 2

(x2 − 3), and
√
5 +

√
6 is algebraic with degree 4 (x4 − 22x2 + 1).

The existence of transcendental numbers is due to Joseph Liouville who in 1844 first gave a class, très
étendue, as described in the title of his paper which didn’t satisfy the above definiton. His proof stems from
the following

Lemma 3.3. (Liouville 1844) For any algebraic number α of degree n > 1 there exists c ∈ Z+(dependant
on α) such that ∣∣∣∣α− p

q

∣∣∣∣ > 1

cqn

for all rational p/q, q > 0

Proof. Let f(x) ∈ Z[x] be a polynomial of degree n for which f(α) = 0. Let c be a positive integer such that∣∣f ′(x)∣∣ ≤ c whenever |α− x| ≤ 1 Then by the Mean Value Theorem we have,
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∣∣f(α)− f(x)
∣∣ = ∣∣f ′(d)∣∣ |α− x| ,

for some d between α and x. Therefore we can apply our bound1 for f ′ in conjuction with f(α) = 0 to yield∣∣f(x)∣∣ ≤ c |α− x| . (1)

We want to show
∣∣α− p/q

∣∣ > 1/cqn This is clearly true if
∣∣α− p/q

∣∣ > 1. Hence we can assume that∣∣α− p/q
∣∣ ≤ 1. So by (1) we have that

∣∣f(p/q)∣∣ ≤ c
∣∣α− p/q

∣∣ and therefore with q > 0 we see∣∣qnf(p/q)∣∣ ≤ cqn
∣∣α− p/q

∣∣ . (2)

Since qnf(p/q) is an integer and f(p/q) ̸= 0 as otherwise α would satisfy an equation with degree less than
n. We have that the LHS of (2) is at least 1 and we can conclude the proof by noting equality cannot hold
as α is irrational.

We now have the tools to construct our first transcendental number, first proven by Liouville in 1851!

Proposition 3.4. (Liouville 1851)

L =

∞∑
m=0

1

10m!
is transcendental.

Proof. Suppose L is an algebraic number. Clearly L cannot be rational since it’s decimal expansion is neither
finite nor recurs, hence L has degree n > 1. For k ∈ Z+ define the integers pk, qk as:

pk = 10k!
( 1

101!
+

1

102!
+ · · ·+ 1

10k!

)
and qk = 10k!.

Now ∣∣∣∣L− pk
qk

∣∣∣∣ = ∞∑
m=k+1

1

10m!

=
1

10(k+1)!

(
1 +

1

10k+2
+

1

10k+210k+3
+

1

10k+210k+310k+4
+ · · ·

)
<

1

10(k+1)!

(
1 +

1

10
+

1

102
+

1

103
+ · · ·

)
=

10/9

10(k+1)!

<
2

10(k+1)!
.

By Lemma 3.1, there exists c such that for all k,

2

10(k+1)!
≥ 1

c(10k!)n

and consequently
2c ≥ 10k!(k+1−n)

which for large enough k gives us our contradiction since c is a fixed finite value, hence L is transcendental.

Numbers such as the one above are called Liouville numbers.

1Note that c was chosen to be an integer for simplicity, a stronger bound can in fact be achieved explicitly without too much
difficulty, see (Baker 1975, p. 1-2)
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Definition 3.5. A number α is a Louville number if α is irrational and for each n ∈ Z+ there exists integers
p and q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

qn
and q > 1.

Theorem 3.6. Every Liouville number is transcendental

Proof. (Oxtoby 1980, p. 7) Suppose there exists some Liouville number α that is algebraic and of degree n.
Clearly n > 1 as α is irrational. Therefore we can apply Lemma 3.1 and say there is some c > 0 such that∣∣α− p/q

∣∣ > 1/cqn (3)

for all p, q ∈ Z and with q > 0. Now choose some k ∈ Z+ such that

2k ≥ c2n. (4)

Since α is Liouville, there exists p, q ∈ Z with q > 1 such that∣∣α− p/q
∣∣ < 1/qk. (5)

Combining (3) and (5) we get that 1/qk > 1/cqn implying that c > qk−n which when combined with (4) and
the fact that q is an integer greater than 1 gives the contradiction,

c > qk−n ≥ 2k−n ≥ c.

But exactly how common are Liouville numbers? Using the theory we have developed thus far it is natural
to look at the set of numbers which are not Liouville.

Theorem 3.7. The set L of Liouville numbers is a residual set in R.

Proof. We expand slightly on the proof given in (Oxtoby 1980, p. 8), by Definition 3.5 we have that

L =
(
R \Q

)
∩
⋂
n∈N

Un. (6)

Where Un is defined as:

Un =

∞⋃
q=2

∞⋃
p=−∞

{
x ∈ R :

∣∣∣∣x− p

q

∣∣∣∣ < 1

qn

}
=

∞⋃
q=2

∞⋃
p=−∞

(
− 1

qn
+
p

q
,
1

qn
+
p

q

)
.

Un is clearly open as it’s a union of open sets. Additionally, we have that Un contains every element of the
form p/q , q ≥ 2, therefore Q ⊂ Un. It now follows that,

Q ⊂ Un ⊂ Un =⇒ Q ⊂ Un = Un =⇒ R ⊂ Un.

As R is the entire space we have Un = R, hence Un is a dense open set and so by Lemma A.3 it’s complement
is nowhere dense. Now see that the complement of (6) is:

R \ L = Q ∪
⋃
n∈N

(
R \ Un

)
.

Hence the second statement of theorem 2.5 tells us that we have R\L is of first category and so by the Baire
category theorem we have that L is dense in R.
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We have found that in any interval we take, we will always find Liouville numbers and thus transcendental
numbers. They are the ”general case” in the sense of category. One might wish that showing numbers are
liouville numbers might give a good algorithm to finding transcendentals, alas, there are uncountably many
transcendentals that are not Liouville. A liouville number is a number that allows for the ultimate accuracy
when approximating by rational numbers(the inequality holds for all positive integers n), but this isn’t the
case for most. The infamous e for example is transcendental3 but not liouville4.

This indicates that whilst the set of Liouville numbers is ”large” from the point of view of category, under a
different lense the story might be different. We will explore this idea further in Chapter 5. However, before
that, we give 2 example applications in real analysis. The first of which is another existence argument, the
second gives another look at the idea of size from a category point of view.

4 Functions on R

4.1 Proving a function does not exist

We begin this section by introducing a new notion of continuity which will prove useful in a short while.

Definition 4.1. Given a real function f on R, for any bounded interval J we define ω(f, J) to be the
oscillation of f over J as

ω(f, J) ≡ sup{
∣∣f(x)− f(y)

∣∣ : x, y ∈ J},

and for x0 ∈ R we define ω(f, x0), the oscillation of f at x0 as

ω(f, x0) ≡ inf{ω(f, I) : all such I containing x0}.

Theorem 4.2. f is continuous at x0 if and only if ω(f, x0) = 0.

Proof. =⇒: Suppose f is continuous at x0. Let ε > 0. There exists δ > 0 such that

|x− x0| < δ ⇒
∣∣f(x)− f(x0)

∣∣ < ε

2
.

Suppose x, y ∈ (x0 − δ, x0 + δ) then we have |x− x0| < δ and |y − x0| < δ and now using∣∣f(x)− f(y)
∣∣ ≤ ∣∣f(x)− f(x0)

∣∣+ ∣∣f(y)− f(x0)
∣∣ < ε,

it follows that ω(f, x0) < ε⇒ ω(f, x0) = 0.

⇐=: Conversely suppose ω(f, x0) = 0. Let ε > 0. There exists δ > 0 such that ω(f, (x0 − δ, x0 + δ)) < ε so
then

|x− x0| < δ ⇒
∣∣f(x)− f(x0)

∣∣ < ε,

hence showing that f is continuous at x0.

Note that this definition of continuity gives us a quantative estimate on the size of the discontinuity.

We now shift our attention to Thomae’s function defined on R given by

3A proof of this is given in full in Appendix B
4A proof of this can be found in (Baker 1975, p.86, p.103)

8



f(x) =

{
1
q for rational x = p

q ,with p ∈ Z and q ∈ N coprime

0 x /∈ Q

1
2

1
3

1
4
1
51

6 1
7

1
5

2
5

3
5

4
5

1
4

2
4

3
4

1
3

2
3

1
2

This function, typically introduced in a first course in real analysis exhibits the pointwise nature of continuity.
It is a common exercise to show that the function is continuous at every irrational and discontinuous at
every rational. A natural question to ask after proving this is if there exists a function that has the opposite
property. That is, can we find a function continuous on the rationals and discontinuous on the irrationals?
After trying to construct one for a while one may start to suspect that such a function does not exist.

Theorem 4.3. For a real function on R, continuous at the points of a dense set C, the set D of points of
discontinuity is of first category.

Proof. (Giles 2000, p.144) Since f is continuous at x0 if and only if ω(f, x0) = 0 let us define for all n ∈ N

En ≡ {x ∈ R : ω(f, x) ≥ 1

n
}.

Let us first show En is closed, consider a limit point l of En. For any bounded interval I such that l ∈ I
there exists an x ∈ En yielding

ω(f, I) ≥ ω(f, x) ≥ 1

n
.

However ω(f, l) is just the infimum of ω(f, I) and so we have ω(f, l) ≥ 1
n . So l ∈ En and thus En is closed.

Clearly D =
⋃
(En : n ∈ N) and now we see our end goal, if we can show each En has empty interior we

would immediately have D to be of first category since En is closed. So let us suppose for a contradiction
that there exists n ∈ N such that En

o ̸= ∅. Then there exists some open subset u ⊂ En, but then we must
have u ⊂ D and so Do ̸= ∅. Now by Lemma A.1 we see that Do = X \ X \D = X \ C ̸= ∅. Which
contradicts the fact C is dense since we have C ̸= X. So we have that for all n ∈ N, En

o = ∅. Since the En

are closed they must all be nowhere dense, hence D is of first category.

This Theorem immediately answers our question, it is not possible to construct a real function on R that is
continuous on the rationals and discontinuous at the irrationals. This follows since the set Q, whilst dense, is
of first category in R. Then by the Baire Category Theorem that the residual set R\Q is of second category.

4.2 Nowhere Differentiable Functions

In elementary calculus most of the continuous functions one encounters are well behaved in the sense that
they are differentiable everywhere. A few examples crop up such as |x| where we have a singular point of
non-differentiability and this can lead to the intuition that continuous functions do not have more than a
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finite number of points where they are not differentiable or in the absolute worst case a countable set of
points. This was the prevailing opinion of most mathematicians in the early nineteenth century, with the
famous physicist and mathematician André-Marie Ampère giving an attempted proof in his 1806 paper.
So it came as quite a suprise when in 1872 Karl Weierstrass presented a function which was continuous
everywhere but differentiable nowhere. A historical quirk is that unlike often stated, Weierstrass was not the
first to find such a function, rather the first to officially publish one. Several other earlier examples exist, the
earliest believed to be have been constructed by Bernard Bolzano around 1830, which was finally published
posthumously in 1922.

Theorem 4.4. Let 0 < a < 1 be a real number and let b be a positive odd integer. If ab > 1 and 2
3 >

π
ab−1 ,

then the Weierstrass funcion:

W (x) =

∞∑
k=0

ak cos(bkπx)

is continuous on R but nowhere differentiable on R.

The proof whilst interesting is too long to include here and so refer the reader to (Pedersen 2015, p.238-240).
We note that in the proof it is also shown that W (x) has unbounded difference quotients on R, a fact we
shall soon exploit.

It can be even more suprising that from the point of view of category, almost all continuous functions are
nowhere differentiable. This is encapsulated by the following Theorem proven by Stefan Banach in 1931.

Theorem 4.5. Let A = {f ∈ C([0, 1]) : there exists an x0 ∈ [0, 1] such that f ′(x0) exists}. A is a set of first
category.

Proof. The proof follows the one given in (Giles 2000, p.147-148) but with the Weierstrass function rather
than the saw-tooth function. This choice was motivated by (Vesneske 2019, p.15).

The general strategy for this proof is very similar to previous ones. We wish to define a set that is a countable
union of nowhere dense sets. With this in mind it is natural to define the sets for N ∈ N as

EN = {f ∈ C([0, 1]) : there exists an x0 ∈ [0, 1] such that
∣∣f(x)− f(x0)

∣∣ ≤ N |x− x0| for all x ∈ [0, 1]}

Our first step is to check this is a useful way to construct our sets, we want for A ⊂
⋃

N∈NEN since then if
we can show the right is a first category set then the result follows by statement 1 of Theorem 2.5.

Let f ∈ A and fix x0 such that f ′(x0) exists. Then for some δ > 0 such that 0 < |x− x0| < δ we have that∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ < ∣∣f ′(x0)∣∣+ 1.

What about when |x− x0| ≥ δ? Since f is uniformly continuous there exists a bound for f , let us denote
this with M , such that

∣∣f(x)∣∣ ≤M for all x ∈ [0, 1]. So we have∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤
∣∣f(x)∣∣+ ∣∣f(x0)∣∣

|x− x0|
≤ 2M

δ
.

We now let N ≥ max{
∣∣f ′(x0)∣∣+ 1, 2Mδ }, so that for all x ∈ [0, 1] we have that

∣∣f(x)− f(x0)
∣∣ ≤ N |x− x0|.

Hence f ∈
⋃

N∈NEN and since f was chosen arbitrarily we are done.

To show that A is indeed a subset of a first category set requires us to check that for each N ∈ N EN is both
closed and has empty interior. We will require an additional Lemma.

Lemma 4.6. Let fn : [a, b] 7→ R be a sequence of continuous functions that converge uniformly to f : [a, b] 7→
R and xn (where xn ∈ [a, b]) converges to x, then fn(xn) converges to f(x).
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Proof. Note that we have the following inequality∣∣fn(xn)− f(x)
∣∣ ≤ ∣∣fn(xn)− f(xn)

∣∣+ ∣∣f(xn)− f(x)
∣∣

≤ ∥fn − f∥∞ +
∣∣f(xn)− f(x)

∣∣ .
Let ε > 0. As fn ⇒ f there exists N such that ∥fn − f∥∞ ≤ ε

2 for all n > N . We see from a standard result
in analysis that f must be continuous since a sequence of continuous functions converges to it. So given ε
there exists δ > 0 such that |x− x0| < δ implies

∣∣f(xn)− f(x)
∣∣ < ε

2 . Since xn −→ x there exists K such that

|x− x0| < δ for all n > K. So if we take n > max{N,K} then we must have that
∣∣fn(xn)− f(x)

∣∣ < ε.

With this in mind we proceed with showing that the EN are closed. Consider a limit point f of one of
the EN . Then we have a sequence {fn} in EN such that {fn} converges to f . For each n let us choose
xn ∈ [0, 1] to be the x0 corresponding to each fn in the definition of En. Thus for each n we have that∣∣fn(x)− fn(xn)

∣∣ ≤ n |x− xn| holds true for all x ∈ [0, 1]. Since each xn ∈ [0, 1] the sequence is trivially
bounded, this allows us to apply the Bolzano-Weierstrass Theorem to {xn}. We now have a convergent
subsequence of {xn}, {xnk}, that converges to a point x0 ∈ [0, 1]. For k ∈ N, let yk := xnk and gk := fnk.
We have that {fnk} converges to f and {yk} converges to x0. We can now apply Lemma 4.6 to find that
gk(yk) converges to f(x0).
Suppose x ∈ [0, 1] but x ̸= x0. Then there must exist K ∈ N such that yk ̸= x for all k > K. Hence for all
x ∈ [0, 1] \ {x0} we have that ∣∣∣∣gk(yk)− gk(x)

yk − x

∣∣∣∣ ≤ N =⇒
∣∣∣∣f(x0)− f(x)

x0 − x

∣∣∣∣ ≤ N.

for large enough k. So we see that for all x ∈ [0, 1] it holds true that
∣∣f(x)− f(x0)

∣∣ ≤ N |x− x0|. Showing
that f ∈ EN , and since f was chosen arbitrarily we have that the EN contain all their limit points and are
thus closed.

Our final step is to show that EN has an empty interior for each N ∈ N. To do this we will show that for
any epsilon neighbourhood of an arbitrary g ∈ C([0, 1]) there exists a ψ ∈ C([0, 1]) such that ψ /∈ EN . Our
aim then is to show d∞(g, ψ) < ε. We first employ the Weierstrass Approximation Theorem , this tells us
that for ε > 0 there exists some polynomial p such that

∣∣p(x)− g(x)
∣∣ < ε

2 for all x ∈ [0, 1]. We now recall
that the Weierstrass function W (x) has unbounded difference quotients for all x. But note that multiplying
W (x) by any constant c will yield the function cW (x) which will also have unbounded difference quotients
for every x. With this in mind let us define M = supx∈[0,1]{W (x)} and let ψ(x) = p(x)+ ε

2MW (x). It’s easy
to see that ψ ∈ C([0, 1]) since both p and W are. Also note that ψ will have unbounded difference quotients
on [0, 1] by construction. Therefore ψ /∈ EN for all N ∈ N. To conclude we see that

d∞(g, ψ) = sup
x∈[0,1]

{
∣∣g(x)− ψ(x)

∣∣}
= sup

x∈[0,1]

{∣∣∣∣g(x)− p(x)− ε

2M
W (x)

∣∣∣∣
}

≤ sup
x∈[0,1]

{∣∣g(x)− p(x)
∣∣+ ∣∣∣∣ ε2MW (x)

∣∣∣∣
}

≤ sup
x∈[0,1]

{
∣∣g(x)− p(x)

∣∣}+ sup
x∈[0,1]

{∣∣∣∣ ε2MW (x)

∣∣∣∣
}

<
ε

2
+

ε

2M
M = ε.

Since C([0, 1]) is a complete metric space we see that by the Baire Category Theorem our set A must have an
empty interior. Showing that when compared to the dense residual set of nowhere differentiable functions,
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functions with even a single point of differentiability are not common. This can be strange to think about
but does show us a limitation of human visualization. Our definitions for continuity are much weaker than
the one for differentiability so it makes sense for the latter to be less common, the impression that they
should almost come hand in hand stems from our familiarity with “nice” functions.

5 Notions of Size

In chapter 3 and 4 we introduced the idea that in complete metric spaces first category sets could be viewed
as small. What is a “small” set? A set theorist might say a countable set, whilst we’ve seen that to a
topologist it is nowhere dense and first category sets. Ask an analyst and you might expect an answer that a
set of measure 0 encapsulates the idea of “smallness”. The aim of this chapter is to compare the two notions
and show that they do not have to coincide and that in fact may be diametrically opposed.

Definition 5.1. A σ-ideal on a set X is a collection of subsets of X containing ∅ and closed under arbitrary
subsets and countable unions.

Recall that Theorem 2.1 tells us that first category sets have these properties and so the class of first category
sets is an example of a σ-ideal. We now present another example, the class of nullsets(often called sets of
measure zero).

Definition 5.2. The length of any interval I is denoted by |I|. A set A ⊂ R is a nullset if for every ε > 0
there exists a sequence of intervals In such that A ⊂

⋃
In and

∑
|In| < ε.

It’s trivially seen that singletons are nullsets and that any subset of a nullset is also a nullset. But what
about a countable union of nullsets?

Proposition 5.3. Any countable union of nullsets is also a nullset

Proof. Suppose Ai is a nullset for i ∈ N. Then for each i we have a sequence of intervals Iij where j ∈ N
such that Ai ⊂

⋃
j∈N Iij and

∑∞
j=1

∣∣Iij∣∣ < ε
2i . The set of all intervals Iij covers A and we also have that∑∞

i=1

∑∞
j=1

∣∣Iij∣∣ <∑∞
i=1

ε
2i = ε.

To see why this falls apart when looking at uncountable unions consider

[−1, 1] =
⋃

x∈[0,1]

{x}.

Since singletons are nullsets, the right hand side is an uncountable union of nullsets. But the interval on the
left has length 2.

It should be clear that every countable set is of first category and a nullset since they can be represented as
a countable union of singletons. What about uncountable sets?

One such example is the Cantor set C. The set is constructed iteratively by deleting the open middle third
of [0, 1], then deleting the open middle thirds of each of the intervals [0, 13 ] and [ 23 , 1] and so forth. Let Fn be
the union of the 2n closed intervals of length 1

3n that remain at the nth step. We have that C =
⋂

n∈N Fn.
The set C is closed since it is the intersection of closed sets. We also claim that C has an empty interior.
Suppose it did not, then it would contain an open set of length l > 0. However Fn and therefore C contain
intervals with a maximum length of 1

3n which is less than l for sufficient n. We see then that C is nowhere
dense. That C is a nullset follows from the simple fact that the total length of intervals in Fn is ( 23 )

n, which
is less than ε for large enough n.

Theorem 5.4. The cantor set is uncountable

Proof. The set C is a closed subset of R and hence is also complete as a metric space. Recall that statement
3 of the Baire category theorem told us that a complete metric space could not be first category. We now
see a way to complete the proof. If we can show that any arbitrary x ∈ C is nowhere dense in C then we are
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done since then if C were countable it would be a countable union of nowhere dense sets and thus of first
category, a contradiction.
Choose some x ∈ C, there are points in C arbitrarily close to x by how we’ve constructed C. This shows
C \ {x} is dense in C. But {x} is closed, and so by Lemma A.2 we have that {x} is nowhere dense. So we
cannot have that C =

⋃
i∈N xi, hence C is uncountable.

What do we actually mean by small here though? Loosely, a nullset is small in the sense that we can enclose
it in a sequence of intervals with total length less than some arbitrary ε > 0. If you randomly chose a point
in an interval so that the probability it is any subinterval I is proportional to |I|, the probability it lies in
any nullset is zero. A nowhere dense set is small in the sense that it is punctured by holes everywhere, sets
of first category being built from these will always have a dense set of gaps. However the Baire category
theorem also tells us that in complete metric spaces first category sets will also have an empty interior. No
interval of R can be represented as the union of such sets. It turns out that these two notions don’t have to
coincide, the following Theorem shows that neither class need to include the other.

Theorem 5.5. R can be decomposed into two complementary sets A and A such that A is of first category
and B is a nullset.

Proof. (Oxtoby 1980, p. 5) Let a1, a2, . . . be an enumeration of some countable dense subset of R. Let Iij
be the open interval with center ai and length 1

2i+j . Now for j ∈ N let Gj =
⋃

i∈N and B =
⋂

j∈N. Note

that for all ε > 0 we can choose a large enough j ∈ N such that 1
2j < ε. So since B ⊂

⋃
i∈N Iij and also∑

i∈N
∣∣Iij∣∣ = ∑

i∈N
1

2i+j = 1
2j < ε we see that B is a nullset. We now set A = (R \ B) =

⋃
j∈N (R \Gj).

Notice that Gj is a dense open subset of R since it is the union of open intervals and contains every point
of a dense subset. Hence, by Lemma A.3 we have that (R \ Gj) is nowhere dense. Thus A is a set of first
category.

This is a very striking result however it is not the first time we see it in this essay. Recall from Chapter 3
that the Lioville numbers formed a residual set in R, we claim that it is also a nullset. Showing that L and
R \ L decompose the real line in the manner specified in the previous theorem.

Theorem 5.6. (Oxtoby 1980, p. 8) The set of Liouville numbers L is a nullset

Proof. Remember that we defined L to be the following:

L =
(
R \Q

)
∩
⋂
n∈N

Un.

With Un as:

Un =

∞⋃
q=2

∞⋃
p=−∞

(
− 1

qn
+
p

q
,
1

qn
+
p

q

)
.

It will prove useful to also consider the following where q ≥ 2 is a fixed integer,

Un,q =

∞⋃
p=−∞

(
− 1

qn
+
p

q
,
1

qn
+
p

q

)
.

From the definition of L, one can see L ⊂ Un for every n and thus we have that for any positive integers m
and n

L ∩ (−m,m) ⊂ Un ∩ (−m,m) =

q=∞⋃
q=2

[Un,q ∩ (−m,m)] ⊂ Un =

∞⋃
q=2

mq⋃
p=−mq

(
− 1

qn
+
p

q
,
1

qn
+
p

q

)
.

We see that L ∩ (−m,m) is covered by a sequence of intervals. What is the sequence’s length? For n > 2,
we have that

∞∑
q=2

mq∑
p=−mq

2

qn
=

∞∑
q=2

2

qn

mq∑
p=−mq

1 =

∞∑
q=2

(
4m

qn−1
+

2

qn
) ≤

∞∑
q=2

(
4m

qn−1
+

q

qn
) = (4m+ 1)

∞∑
q=2

1

qn−1

≤ (4m+ 1)

∫ ∞

1

1

xn−1
dx = (4m+ 1)

[
x2−n

2− n

]∞
1

=
4m+ 1

n− 2
.
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So for any choice of m we can find a sufficiently large n such that L ∩ (−m,m) is covered by a sequence of
intervals with total length less than ε. Hence L is a nullset.

Appendix

A Preliminaries

We recall the following notations and results from MA260 Norms, Metrics and Topologies:

� We denote the closure of a set A by A

� We denote the interior of a set A by Ao

� We denote the boundary of a set A by ∂A

Lemma A.1. If A ⊂ X then

Ao = X \ (X \A) and A = X \ (X \A)o

Proof. (Robinson et al. 2023, p. 33)

Lemma A.2. A subset A ⊂ X is nowhere dense in X if and only if X \A is dense in X.

Proof. Following the proof given in (Robinson et al. 2023, p. 34), by applying Lemma A.1 we have

A is nowhere dense ⇐⇒ (A)
o
= ∅

⇐⇒ X \ (X \A) = ∅

⇐⇒ (X \A) = X

⇐⇒ (X \A) is dense in X

Lemma A.3. A subset A ⊂ X is nowhere dense in X if and only if it’s complement contains a dense open
set.

Proof. By a slightly different application of Lemma A.1 we have

A is nowhere dense ⇐⇒ (A)
o
= ∅

⇐⇒ X \ (A)o = X

⇐⇒ X \A = X

⇐⇒ (X \Ao
) = X

⇐⇒ (X \A)o is dense in X

⇐⇒ (X \A) contains a dense open set.

For the last equivalence note that for the forward direction the interior of a set is an open subset of the set
itself. For the converse, if a set contains a dense open set U then it’s interior must also contain U and hence
is dense as well.

Lemma A.4. A set is dense if and only if it’s complement has empty interior

Proof. Let A be a dense subset of X and once again apply Lemma A.1

A is dense ⇐⇒ A = X

⇐⇒ X \ (X \A)o = X

⇐⇒ (X \A)o = ∅.
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B Euler’s number

Theorem B.1. e is a transcendental number

Proof. The first proof of this was given by Hermite (1873) who actually originally proved that eγ was
transcendental for all rational γ ̸= 0. The proof shown here draw largely from the ones given in (Havil 2012,
p. 191) and (Gelfond 1960, p. 42 ). Hermite’s proof follows from an identity for ex. Suppose f(x) is any
polynomial in x and define

F (x) =

∞∑
k=0

f (k)(x)

This is clearly a polynomial of the same degree as f(x) since all the derivatives will be 0 past some large
enough k.

One can see that F (x)− F ′(x) = f(x) so note that

d

dx
(e−xF (x)) = e−xF ′(x)− e−xF (x)

= −e−x(F (x)− F ′(x)) = −e−xf(x).

which now yields ∫ x

0

e−tf(t) dt = [−e−tF (t)]x0 = F (0)− e−xF (x) (7)

For a contradiction we will assume that e is algebraic. So we have some polynomial of degree n with
integer coefficients(a0 ̸= 0) such that:

a0 + a1e+ a2e
2 + · · ·+ ane

n = 0

Now, take set x = k = 0, 1, 2, . . . , n in (7), multiply the equation by ak and sum them together to reach

n∑
k=0

ake
k

∫ k

0

e−tf(t) dt = F (0)

n∑
k=0

ake
k −

n∑
k=0

akF (k)

However using our assumption we see that the first sum on the RHS is 0 and we can also isolate the first
term in the second sum so we have that

a0F (0) +

n∑
k=1

akF (k) = −
n∑

k=0

ake
k

∫ k

0

e−tf(t) dt (8)

We are now in a position to choose f(t). We want to choose it so that the LHS of (8) is a non-zero integer,
whilst making the RHS as small as possible which will give us our contradiction. Hermite’s brilliantly clever
polynomial is

f(t) =
1

(p− 1)!
tp−1g(t)p, g(t) = (t− 1)(t− 2) . . . (t− n), p > n+ |a0| (9)

where p is a prime. The inequality for the size of p might seem to come out of nowhere however we’ll shortly
see why it is necessary.
We begin by showing that the LHS of (8) is a non-zero integer. Firstly lets look at F (0). As f(t) has a zero
of multiplicity p− 1 at t = 0 we see that f (k)(0) = 0 for k < p− 1, we can write the Taylor expansion(this
is obviously a finite sum due to f being a polynomial) of f around 0 as

f(t) =
1

(p− 1)!
f (p−1)(0)tp−1 + · · ·+ 1

k!
f (k)(0)tk + . . . (10)

When k = p − 1 we have our first non zero value, which is f (p−1)(0) = (−1)p . . . (−n)p = [(−1)nn!]p.
This is seen by comparing the coefficients of (9) and (10), see that the first term in (10) is the same as term
given by the constant term of g(t). f (p−1)(0) is clearly an integer but it is also important to note that it is
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not a muliple of p. This is due to minimum size we require p to be. since p > n, p will not occur in the
prime factorisation of n!. What of the terms given by the the derivatives when k ≥ p? Proceeding in the
same manner as before and comparing the coefficients of each power gives us

f (k)(0) =
Ck!

(p− 1)!
(11)

Where C is the coefficient for the (tk−p+1) term in g(t)p. C is obviously an integer and since k ≥ p we have
that the entire thing is an integer. Thus F (0) is an integer and since all terms in it’s sum are divisible by p
bar f (k)(0) we see it must also be non-zero.
We now look at the second term in the LHS, essentially repeating the method above but with Taylor
expansions about 1, 2, . . . , n instead. Since f(t) has a zero of multiplicity p at t = m where 1 ≤ m ≤ n,
m ∈ Z we have that f (k)(m) = 0 for 0 ≤ k < p. For k ≥ p we play the same game as before and compare
coefficients with (9), this gives us something very similar to (11)5. It follows that F (m) is an integer and also
a multiple of p for each t = m where 1 ≤ m ≤ n, m ∈ Z. We can conclude by seeing that since p > |a0| we
have that a0F (0) is an integer which isn’t divisble by the prime p, the sum

∑n
1 akF (k) is however an integer

that is divisible by p. This combination finally gives us that the LHS of (8) is a non zero integer. That is,
it must have an absolute value greater than or equal to 1 for some arbitrary p such that p > n+ |a0|.

We pass our attention to the RHS of (8), note that over the interval [0, n] we have an upper bound for our
large f(t) can get ∣∣f(t)∣∣ ≤ np−1(npnp . . . np)

(p− 1)!
=
nnp+p−1

(p− 1)!

We can now estimate the size of the RHS as follows∣∣∣∣∣∣
n∑

k=0

ake
k

∫ k

0

e−tf(t) dt

∣∣∣∣∣∣ ≤
n∑

k=0

|ak| ek
∫ k

0

e−t
∣∣f(t)∣∣ dt

≤ en
n∑

k=0

|ak|
∫ k

0

e−tn
np+p−1

(p− 1)!
dt

= en
nnp+p−1

(p− 1)!

n∑
k=0

|ak|
∫ k

0

e−t dt ≤ en
nnp+p

(p− 1)!

n∑
k=0

|ak|

Since both the coefficients ak and the degree n are fixed there exists a constant A such that we have∣∣∣∣∣∣
n∑

k=0

ake
k

∫ k

0

e−tf(t) dt

∣∣∣∣∣∣ ≤ A
nnp+p

(p− 1)!

We see that if we choose a large enough prime6 we can make the RHS of (8) as small as we like, certainly
less than 1. This results in a contradiction due to the LHS of(8) being a non-zero integer. Hence e is
transcendental!

9 years later the transcendence of π was proven by Lindemann (1882) using a combination of the methods
shown by Hermite together with the infamous equation eiπ + 1 = 0 7.

5The specific details are omitted here to conserve space, see (Gelfond 1960, p. 43) for the precise values of the higher order
derivatives

6This of course uses the fact that there are infinitely many primes, first proven by Euclid
7A nice proof of this is given in (Havil 2012, p. 194)
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réductible à des irrationnelles algébriques’, CR Acad. Sci. Paris 18, 883–885.

Liouville, J. (1851), ‘Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même
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