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1 INTRODUCTION AND MOTIVATING EXAMPLE

1 Introduction and motivating example

The notion of extremising a quantity, as a function of multiple variables, is a well-established concept in
mathematics. Many problems in Physics, Computing and Geometry involve maximising or minimising
various quantities subject to constraints. The process of finding the roots of the derivative of some objective
function is a familiar one, but what happens when the path of optimisation is no longer so straightforward?

e Given any traversable surface, what path should one take in order to minimise the distance travelled
between two fixed points?

e What shape does a suspended chain naturally make in order to minimise its gravitational potential
energy?

e What shape fence should a farmer build in order to maximise the grazing area for his sheep if he has
a finite amount of fencing to use?

Questions like these require a more delicate approach to extremisation, so we must study new principles
to tackle them. We will also explore the unique scenarios that arise when the quantity we want to extremise
exhibits local ‘symmetries’, and the implications this has in fields such as mathematical physics. Pillars of
mechanics like conservation of momentum and conservation of energy are usually taken as empirical law,
but we can find a framework to view any conservation law as a result of a corresponding special symmetry.

1.1 Example: Minimising distance in R"

Recall that, given a curve I' C R? and a C'(]0, 1]) parametrisation of said curve v: [0,1] — R", the arc
length, /(T"), of the curve is given by:
1
/
= [ In@ia

We also require that the parametrisation v is regular, that is, 7/(t) # 0 for all ¢ € [0,1]. Given two
distinct points a,b € R™, can we find the curve that minimises the arc length between them? Intuitively we
can see the answer is a straight line, but it is a good exercise to try and prove this by thinking variationally.
We adapt the proof from MA3KS8: Variational Principles, Symmetry and Conservation Laws [1, pp. 1-2].

Theorem 1.1. Let a,b € R™ with a # b. The straight line joining a and b is the path that minimises the
distance between them.

Proof. The line L, connecting a and b can be parametrised by v(t) = (1 — t)a + tb,t € [0,1]. The curve is
differentiable on (0, 1), and we see that 7/(t) = b — a and thus:

1 1
<Lab>=/0 |fy’<t>||dt=/0 b — aljdt = ||b— al|

We now consider a family of regular paths, F', that are continuously differentiable on [0, 1] that have endpoints
a and b. Formally:

F= {’Y € Cl([oa 1]) ’Y(O) = a?’}/(l) = b,’)//(t) 7& 0Vte [07 1]}
Pick arbitrary v € F and let I' be the corresponding curve, then:

0< Hb—aH2 (b—a)-(b—a)

—(b—a)- ( /0 1 fy’(t)dt> FTC 1T

1
< ||b—al '/ vl(t)dtH Cauchy-Schwarz
< ||b—al| / [y (¢)||dt Triangle Inequality
= [[b = all((T
So ¢(Lgp) < £(T') for any I" with parametrisation in F'. O
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The general process for solving that problem was not so different from what we would normally expect
in an optimisation problem — we start with a function we want to minimise, and vary the argument(s) until
some condition that implies minimality is achieved, typically a derivative or gradient being equal to 0. Here,
we looked at a family of paths and showed that varying the path from anything other than a straight line
increases arc-length. This introduces a subtle shift in perspective from points to paths, as our objective
functions may now depend not only the points of evaluation, but on the paths taken to get there. We will
see more of this in the next section. Notably, we also required an ansatz solution of a straight line in order
to solve the problem. Although this works when the problems are visualisable and physically intuitive, a
general framework for minimising or maximising these path-dependent functions is much more desirable, for
the sake of generality.

2 Variational Principles

The following section will focus on building up some important machinery used for solving variational
problems — that is, problems involving varying parameters for extremisation — by extending the notion of
the derivative to other mathematical objects of interest, namely the functional.

2.1 Functionals and Extrema

To begin, we recall some of the following definitions:

Definition 2.1 (Global and Local extremum). Let f: Q C R™ — R. We say the function f has a:

i Local mazimum at xg € Q if there exists € > 0 such that f(x) < f(x¢) whenever x € B(xg, ) N .

ii Local minimum at x¢ € Q0 if there exists ¢ > 0 such that f(x) > f(xo) whenever x € B(xg,c) N Q.

These definitions match what we would expect in the single-variable case, and similarly we can use
derivatives (where possible) to characterise necessary conditions for extrema.

Theorem 2.1. Let Q) C R"™ be open. If the function f: Q2 — R is differentiable and attains an extremum at
xg € 1, then:
8if(X0) =0Vie {1, ce ,n}
Where 0; f(x0) is the partial derivative of f with respect to its ith variable.

Proof. We adapt the proof from Spivak’s Calculus on Manifolds 2, p. 27] Fix i € {1,...,n}. We let xo =
(xo(o), xoM, ... ,XO(")) Consider the following single-variable function:
gi(z) = (XO(O), R ,Xo(n))

where z is the ith entry. Clearly, the function g; attains an extremum at z = x¢(¥, and we can deduce
via Rolle’s Theorem that ¢/ (xo(i)) = 0. But this is simply the partial derivative of f with respect to its
ith variable evaluated at xg, so 0;f(xg) = 0. Repeating the argument with suitably defined g; for each
i €{1,...,n} yields the required result. O]

This provides us with a useful corollary:

Corollary 2.1. Let 2 C R"™ be open. Then if the function f: Q — R is differentiable on ) and attains an
extremum at xg € ), then Oy f(x0) =0 Vv € R"

Now we have a more general definition of extrema (and more general necessary conditions to match), we
can define a new object of interest for variational problems: the functional.

Definition 2.2 (Functionals). [3][ p. 1] A real-valued function on a space of functions is called a functional.
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We will focus on functionals that are definite integrals, that is, of the form I': C?([a,b]) — R given by:

b
Iy = / F (2, (), ¢/ (z)) da (2.1)

With F': [a,b] x R x R — R twice continuously differentiable.

Searching for the function y(x) that extremises I[y] is a matter of considering all possible varied paths
y that have fixed endpoints a, b and evaluating I along such paths by integrating. If we want to define this
space of paths, it can help by quantifying their ‘variation’ from the optimal path (which we assume exists).

Definition 2.3 (Space of perturbartions). [3][ p. 29] Let P := {y € C?([a,b]): y(a) = ya,y(b) = yp} denote
the set of paths between a,b € R. Then we define the space of perturbations of P as:

Hp = {n € C*([a,b]): n(a) = n(b) = 0}
Remark. Any §y € P can be written as y + en with y € P,n € Hp,e # 0. To convince yourself of this, note
that C?([a, b]) is a vector space and work through the definition of Hp.

We can now write any path between a and b as a perturbation of some extremal path. We know that
along the extremal path our functional should, naturally, be extremised, so any extremal path y must satisfy:

d
Rl
e [y + en]

The above expression should look familiar to the definition of the directional derivative:

=0 (2.2)

e=0

d
af(x%—tv)

=0

Which provides an alternate, more abstract perspective: we want the directional derivative of the func-
tional to be 0 in the ‘direction’ of all perturbations 7. This also matches the extremum condition we proved
in Theorem 2.1. We can now use Equation 2.2 combined with Equation 2.1 to derive an equation for the
extremal path y that will be very useful for variational analysis.

(ayy) |47

Figure 2.1: An example path, y, and two of its perturbations, § =y + en

2.2 The Euler-Lagrange equation

We start with a lemma [4, p.30]:

Lemma 2.2 (Fundamental Lemma of the Calculus of Variations). Let f: [a,b] C R — R be continuous.
Then if:
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[ s =

for all n € C*([a,b]) such that n(a) = n(b) =0, then f(z) =

Proof. [4, p.30] Suppose that f(z) # 0 for some x € [a, b]. By the continuity of f, there exists a sub-interval
[c,d] C [a,b] containing Z such that f is nonzero and does not change sign across the interval. WLOG say
f is positive on [e,d]. We construct the following ‘bump’ function:

n e C([a,b]), n(z) = {(()x —¢)*(z — d)? ggle e, d]

Then:

Which is a contradiction. O
We also recall the following lemma:

Lemma 2.3 (Leibniz’s Rule). Let the function f: R® — R be C'([a,b]). Then:

d [? b9
d%/a f(xl,...,zn)dsz/a axif(xl,...,xn)dzj

for1<14,7 <n.

This is often referred to as ’differentiating under the integral sign’. Equipped with these results, we can
evaluate expressions like Equation 2.2 for functionals that are definite integrals. Let § denote a perturbation
of y, that is, § = y + en for some y € P, n € H,, € € R. Then:

d d [? , ,
e = - [ F (@) +en@). /(@) + /(@) da
/ e F (z,y(x) + en(z),y (z) + en/(z)) da By Lemma 2.3
oF 8F 8y OF oy’ . .
/ - 38 ay 2% 3y’ 9 > dx Multivariable Chain Rule
oF ,
—/a (Gnte)+ (@) ds

It is important to note that we assume independence of 4 and ¢/, and we have computed %—f by differentiating
with respect to the arguments of F', not with respect to functions. Integrating by parts on the right-hand

term, we see that:
r=b b
d OF
[, g
b
d OF
= [ gt
Where we have used that n € Hp so n(a) = n(b) = 0. Returning to the previous expression:
d broF d OF
—1I = — - — d
el = [ (Gon) - 4500 do

de
b/oF  d OF
-/ <ay - day> n(z)dz

bOF OF
" (z) = ay'"( z)
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Noting that we have n € Hp C C?([a,b]) C C([a,b]) and F twice continuously differentiable, so we can
apply Lemma 2.2. We also set ¢ = 0 and set the entire derivative to 0 as in Equation 2.2. This forces § = v,
and thus any extremal y must satisfy:

oF dor
oy  dx oy

Which is known as the Euler-Lagrange equation.

This is an extremely powerful tool for solving variational problems. Rather than having to make edu-
cated guesses based on intuition or observations, we have instead have a necessary condition for functional
extremisation. Determining the nature of any subsequently derived extrema involves calculating higher
‘derivatives’ of the functional, but we will focus on first derivatives for now. We could also have arrived to
this same equation by method of a series expansion, which allows us to simultaneously define a quantity
known as the ’first variation’, and also arrive at another condition for extremisation. Say y = y + en, then
for € sufficiently small, we can apply Taylor’s theorem [3, pp.29-30]:

(2.3)

F(z,9,9) = F(z,y+eny +en)

OF  OF
- F / / 2
@)+ (Gon+ S0 ) + 0
Then: )
OF  OF
I[g) — Ify] = —n+4+—n')d 2
o1~ =< [ (Gon+ g ) do+O()
6I(ym)
Where:

brOF  OF
ol (y,n) 1:/ <8yn + 8y’n/> dz

is called the first variation of I. Note that O(g?) is regarded as ¢ — 0. For extremisation we require that
that this quantity vanishes, again leading to the Euler-Lagrange equation as a necessary condition. The
difference in functional outputs being of order 2 when the variation between paths is of order ¢ is a very
useful formulation we will use more later when examining local symmetries.

2.2.1 Example: Revisiting distance with n = 2

Let us revisit the example presented in Section 1.1 of minimising distance in R", setting n = 2 for simplicity.
Armed with the Euler-Lagrange equation, we will show that considering a space of functions in the form
y(z) and solving the relevant differential equations will also yield a straight-line geodesic. Consider the
functional ¢: C%([a,b]) — R with a,b € R given by:

émzlﬂh+wm9m

This is an equivalent formulation of the arc length for a function y(z) with endpoints x = a and x = b.
We calculate the following partial derivatives:

F(z,y,y) =1+ (¥ (2))’
oF _, oF 1
oy

, (@)
= - 2y (2) = ——28L
% o irw@r it @)
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Applying Euler-Lagrange:

i 7y’(m) =0 = y’(x) =Cy, C;eR
d bl
TV () 1+ (y(z))?
CQ
= V@) =\ <1
02
— y(w): 1 3 93+C’2, |Cl|<17CQER

We can evaluate y(z) at * = a, x = b and z = 0 to obtain:

y(b) — y(a)
x)=|"—""|x 0
o) = (0= ) o 4 y0)
Which is clearly the straight line that passes through (a,y(a)) and (b, y(b)), as we expected. It is important
to note that satisfying the Euler-Lagrange equations is only a necessary condition for extremisation, not
a sufficient condition, and so other tools ! would then be used to prove that the derived extremal path is
minimal.

2.2.2 Endpoint conditions

Up until now we have been considering variational problems that over a space of paths that have fixed
endpoints, but it is possible to analyse and solve problems where we search for an extremal curve where
both independent and dependent coordinate endpoints are allowed to vary. This is a useful generalisation to
seek, as some functionals that exhibit spatial symmetries can have extremal paths whose start and endpoint
do not matter. We follow the arguments in Brunt’s The Calculus of Variations closely in this subsection
[3][ pp.144-148]. Consider a real-valued functional of the form:

b
IM=/Fm%wm

Where F' is smooth. We now change the integration limits such that they may vary with the pertubed
path. That is, for § =y +en:

b
Iwszm@mw

Where 1 € C?([min(a, @), max(b,b)]), so that we may work over a common interval. We can also write
the differences between the path endpoints of y and y as multiples of e:

a=a+¢eXy,b=b+eX;
Ua = Yo +EY0, 05 = yp + V1

We can compute the difference in functional outputs directly, and observe what necessary conditions an
extremal path would satisfy, just as in the previous section.

1 Just as the first variation corresponds to the first derivative, we can define and analyse second variations of functionals that
reveal more information about the nature of extremal paths
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b b
1~ 1 = [ Fle.g.9)is = [ Ploy.y)is
b+eXq b
=/ F(fc,y,y’)dw—/ F(z,y,y)dz
a+eXo a

b b+eXq
= / (F(z,5,9") — F(x,y,y)) dz + / F(z,y,y)dz
a b

a+eXo
/ F($, gvg/)dx
a

For small ¢, which we examine as we consider ¢ — 0 when y — y, we may take the following expansions

to O(e?):

b-‘r&Xl
/ F(z, 5,7 )dz = eX1F (2, y,7)
b

r=b

a+eXo
/ F(x,y,7)de = eXoF (x,y,7)
a

r=a

Using Equation 2.2 and integrating by parts yields:

or |*=* b /OF d OF
Iy - Iyl =€ [ n= o T I A
[M[Me@wxﬁﬁn@ydmﬂ“
+ X1F(2,9,y") — XoF(z,y,y) )
z=b r=a
+0(e?)

We can then use the path endpoint conditions that characterise § and y to arrive at the following relation:

aFm:b_i_/b ai_iai dl’
(T o " Oy dz dy

2y
163// x=b Oﬁyl T=a
OF oOF
X, (F-yZ= —Xo(F—y=—
* ! < Y ay/> r=b ‘ < Y 8y’> :v:a)
+0(£%)

We argue as when deriving the Euler-Lagrange equation that we require all terms of order € to vanish
for all variations 1. The critical insight here is that as this must hold true for all variations 7, it must
hold when 7 belongs to the corresponding space of perturbations of the extremal, Hp. This means that the
extremal path must again satisfy the Euler-Lagrange equations, and additionally:

OF ,OF r=h
(v - (v - ) ax)|_ =0

r=a

Where:

simply encode the values attained at the boundaries a,b. We can simplify this condition further by
introducing two more quantities:
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OF
p= v “Canonical Momentum”
Y
H=yp-F “The Hamiltonian”

Which yields:
r=b
(pAY (z) — HAX (x)) =0 (2.4)

r=a
Which we will henceforth refer to as the Free-endpoint condition. This condition is helpful for analysing
problems where we still desire extremisation but cannot make any further assumptions about the boundary
conditions a solution must satisfy, in the same way one might solve a differential equation to find a general
family of solutions before turning it into an initial value problem. Referring back to the example presented
in Section 1.1 and Section 2.2.1, if we had not prescribed any boundary conditions y(a), y(b), then the entire
family of straight lines in R? would be extremal paths.

2.2.3 Extension to generalised lagrangians

Previously we looked at functionals of the form I[y] where y: R — R, but we can generalise the Euler-
Lagrange equation to handle vector-valued functions of a single variable too. We will let C*([a, b], R™) be
the set of functions q: [a,b] — R™ that have k continuous derivatives. The space of perturbations P for the
general case is defined similarly to Definition 2.3:

P :={q € C*([a,b],R"): q(a) = aa,a(b) = av}, Hp := {n € C*([a, 0], R"): 1(a) = 1(b) = 0}

Our updated functional thus looks like:

b
I[q] = / L(t,q,q)dt

We now call the twice continuously differentiable function £: R x R™ x R" the lagrangian of I. We can
repeat the steps in 2.2 in this updated case:

d
dI[q+5n /th+5n,q+en)d

/ L(t,q+en,q+en)dt

/ <a 77+g£>dt (2.5)

We use an insight from Brunt’s The Calculus of Variations[3|[ pp.61-62] to conclude the derivation.
Consider a family of subsets of Hp given by:

HY ={(0,...,n;,...,0) € Hp}, i € {1,...,n}

As before we desire our ‘derivative’ to vanish for any perturbation 7n that we pick. If n € Hg) then

Equation 2.5 simplifies to:
[ (%s i)
u 8ql 771 8 7]2

Which we know vanishes when the following Euler-Lagrange equation is satisfied:

oL doc
dq; At dq;
Iterating over i € {1,...,n} provides a system of Euler-Lagrange equations that must be satisfied for

extremisation. Just as we can extend the Euler-Lagrange equation into a system of equations, we can do
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the same for the Free-endpoint condition. The proof is omitted, but any extremal path q(¢) with no further
boundary conditions prescribed will satisfy:

oL "o
8—q.iAQi(t) — (Z Gigs £> AT(t) =0

i=1

n

i=1

Which, as before, can be simplified using notions of the hamiltonian and canonical momentum:

> piAQi(t) — HAT(t) = 0 (26)
i=1
Where:
oL oL
pi = 874717[:2%]%_5 (2.7)
v i=1

Are the generalised canonical momenta and hamiltonian for the system.

3 Invariance and Symmetry

3.1 Symmetries of a lagrangian

Having explored standalone extremisation sufficiently, we will now turn our attention to the notion of
symmetry and what it can imply for systems that can be analysed with variational principles. Intuitively
speaking, a dynamic or physical system is governed by a corresponding set of laws, and these laws are
recoverable from the system’s lagrangian. We think of symmetries as transformations of the lagrangian that
leave the functional or lagrangian itself unchanged. We can formalise this concept as follows:

Definition 3.1 (One-parameter symmetry). [3, pp.202-204] Consider a real-valued functional I with para-
metric lagrangian £ € C1(R x R™ x R™) of the form £(t,q, ¢). Then we define the following transformations:

T:=0(t,q;¢), Q=1v(t q;e)

Where 6 and i are smooth functions of q and € such that:

0(t,q;0) =t, (t,q;0) =q
These transformations are called symmetries of L (or I) if:

0(b,q(b);e) .

b
o = [ ett.ato.at = [ LT, Q(T), Q(T))dT

(a,q(a)se)
For all smooth functions q: R — R" and ¢ sufficiently small so that # and ¢ are invertible.

Here Q = d%Q‘ So each symmetry takes a parameter e, transforms all the relevant coordinates and
leaves the functional unchanged.

Example 3.1 (Kepler’s Planetary Motion). [3]][ p.206] Set a,b € R. Define:
GMm

V@ +a

For some G, M, m € R. This lagrangian is of the form £ =T — V', where T models the kinetic energy
of the physical system and V the potential energy. Lagrangians of this form are common in mathematical
physics, as the equations of motion of a physical system can be recovered from how its energy changes
with respect to some configuration space (this is discussed in greater detail in Section 4 under Hamilton’s
Principle). Specifically, this lagrangian models planetary motion of a celestial body of mass m about a larger
body of mass M > m. Consider the transformations:

1
L(t,a,q) = 5m (0" + @7) +
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T=0(t,qe)=t (3.1)
Q1 =1(t,q;€) = q1 cos(e) + g2 sin(e)
Q2 = a(t,q;€) = —qisin(e) + g2 cos(e)
This represents a spatial rotation of the coordinates q by an angle €. The transformation is smooth as both
sine and cosine are smooth functions, and the transformations are invertible for any ¢ € R, as is standard

with rotations (recall SO(n) is a group). We have that the operators % and % are equal by Equation 3.1,
and so:

Q1= q cos(e) + gz sin(e)
Q2 = —qi1sin(€) + gz cos(e)

Substituting these into the lagrangian, we get:

GMm

£ = om (&' +6) + o
1 2

Simplifying the kinetic term:

Q12 + Q22 = q12 cos®(e) + 2¢1 ¢ sin(e) cos(e) + ¢o% sin’(e
+ ¢1? sin’(e) — 2q1 g2 sin(e) cos(e) + ¢ cos?(e)
= ¢1? (sin’(e) + cos®(¢)) + g2 (sin®(e) + cos*(e))
= ¢+ ¢2°

And similarly for the denominator in the potential term:

Q2 + Q3 = ¢ cos?(€) + 2q1ap sin(e) cos(e) + g sin <)
4¢3 sin®(g) — 2q1go sin(e) cos(g) + g5 cos®(e)
= ¢} (cos® () + sin®(¢)) + g3 (cos®(e) + sin®(e))
=i + 43

Then:

K

V& + a3

[’(Tv Q, Q) = %m (61'12 + 422) +
= 'C’(ty q, Q)

We also have 0(a,q(a);e) = a and 0(b,q(b);e) = b, and thus:

b 0(b,q(b);e) .
[ etaaa= [ " rra.qar
a 6(a,a(a);e)

So T, Q1 and Q)2 are symmetries of L. Physically, this result suggests that the laws governing planetary
motion do not change if you rotate your frame of reference in the same axis as that of the rotation. Results like
this may seem obvious, but isotropy of space is a very useful assumption to be able to make in mathematical
modelling and physics. 2

2The Michelson-Morley experiment performed in 1887 was an attempt to prove the existence of the Luminiferous Aether,
a ‘wind’ that would act as the propagation medium for light. Instead it was proven to not exist, which allowed theories like

Einstein’s Special Relativity to develop.

10



3.2 Extremal invariance 3 INVARIANCE AND SYMMETRY

3.2 Extremal invariance

The ideas and order of information in this subsection are again based on Brunt’s The Calculus of Variations
[3][ pp. 44-46], with additional calculations and motivation added for completeness. A natural question to
ask now would be how does the extremal path for a functional change with respect to its symmetries? That
is, does an extremal path remain extremal under certain choices of coordinates? We will consider a more
general family of transformations than the one-parameter symmetries defined in Equation 3.1 but focus on
the 2-dimensional case for clarity. We recall that coordinate transformations z,y: R? — R with form:

r=z(u,v),y = y(u,v) (3.4)

have an associated property known as the jacobian determinant. We assume that x and y are smooth
transformations — they have continuous partial derivatives with respect to the variables u and v. The
jacobian determinant of such a transformation is given by:

oz Oy
o o
=det [ 7" 9
gz Oy
v v

We recall that a transformation is nonsingular if:
A(z,y)
O(u,v)

Notably, a transformation is nonsingular if and only if it is invertible. Let I be a functional of the form:

‘ 0(z,y)
a(u,v)

# 0 V(u,v) € R?

b
I[y] _/ E(x,y,y')d:n

and P be the corresponding space of paths as in Definition 2.3. We can use the multivariable chain rule
along with integration by substitution to observe how I changes when transforming the xy-plane to the
uv-plane. Note that in this formulation we have assumed y to be a function of z, and thus we also assume
v to be a function of w.

dy _oydu  oydv
du  Oudu  Ovdu
—@4_@0’

 Ou  Ov

And similarly for z(u,v):

de _ dwdu 0z dv
du  Oudu  Ovdu
—87'%_1_67'7; !

- Ou (%U

Then applying the chain rule once more yields:

dy dydu
de ~ dudz
_ Yu + Yot
oy + Tt

Where z,, x, and y,, Y, are the partial derivatives of x and y with respect to v and v, respectively. We
also perform an integral substitution as follows:
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Substituting these expressions into I[y| yields:

/ﬁxyy

/
_/ L <:U(u v),y(u,v), W) (T4 + 20" )du

Loy + Ty

With ug, u1, v, v1 all satisfying the system:

v(ug) = vo a = x(up, vo) Ya = y(uo,v0)
v(uy) = v b= x(u1,v1) Yo = y(u1,v1)

We also define a new space of paths for v as in Definition 2.3:

P = {v € C*([ug, u1]): v(uo) = vo,v(u1) = v1}
Now we have a way to transform between I[y] and I[v] we are in a better position to ask the following

question: If y(x) € P is an extremal for I and v(u) is the transformation of y under Equation 3.4, then is
v(u) extremal for 17

Theorem 3.1. [3/[p. 45] Lety € P,v € P be two real-valued functions on R? satisfying smooth, nonsingular
transformations of the form:

x = z(u,v),y = y(u,v)
and let I]y], f[v] be the corresponding functionals defined over the space of paths fory and v respectively.

Then y is an extremal of I[y] if and only if v is an extremal of I[v].

Proof. [3][ pp. 45-46] Suppose v € P is extremal for I[v]. Then v satisfies:

a0l o
dudv  Ov
Where:

5 ’ Yu + Yo’ /
[«(U,U, v ) =L (x(u, U),y(u,v), w) (l’u + v )

We compute the partial derivative with respect to v’ using the product and chain rule.

aﬁ - 8 yu _|_ yvv/ ,
% o |:£ (l’(u, U)a y(uv U)a Lo+ xv’l)/>:| (:Uu + Zyv )
Yu+ Yt O
+L < (u,v), y(u,v), W) N [(xu + xvv/)]
= % 9 Yu + Yo ,
_(ax T ZZ oy ov' [$u+xv })(xu—l—mvv)—kmvﬁ
0

ot N0 [yt
_ay’(x“” )8’[xu+xv ]

And similarly for v:

82 . a yu + y’Uv/ /
v - v |:£ (:E(u,v),y(u,v), Lo+ .%'U’U,>:| ('ru + x,v )
Yu + YV O
+2 (st o)yt o), 2B 2 [, )

(oL oL OL 0 [yu+ ypt , 0 ,
— <8xxv 8—yyv + 9y 90 [W]) (x4 + 20") + E% [z + 20|

12
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After some extensive manipulation, it can be shown that:

d 0L oL

doL oL d oL oL
dudv’  Ov

dedy  dy
d oL oL
dz oy’ Oy
But by Equation 3.5, the left hand side is zero. We also know the jacobian determinant for the trans-
formation is nonzero as the transformation is nonsingular, so we must have:

= (TuYo — ToYu) <

_ ‘8(:&1/)
d(u, v)

which implies y is extremal for I[y]. Inverting the transformations proves the converse, and we are
done. O

As the one-parameter symmetries introduced in Definition 3.1 are smooth and invertible, they also
support the ‘invariance’ of the Euler-Lagrange equation. This allows us to analyse the lagrangian of a
system in any sensible choice of coordinates, which is helpful for solving problems that exhibit their own
symmetries — Example 3.1 could have been analysed with a lagrangian based on polar coordinates rather
than cartesian coordinates to exploit the rotational symmetry of circular or elliptical orbits for example.
So far, these one-parameter symmetries have conserved both the lagrangian and its corresponding Euler-
Lagrange equation(s), which suggests a correspondence between symmetry and conservation as concepts.
This is the main idea behind Noether’s Theorem, that every continuous, differentiable symmetry of a system
has a corresponding conservation law. That is to say, induces a quantity that is stationary over time. We
will spend the next section formalising intuition behind conserved quantities and proving their induction
from lagrangian symmetries.

4 Noether’s Theorem

We begin with a formal definition of a conserved quantity:

Definition 4.1 (Conserved Quantity). Let £: RxR" xR"™ — R of the form L(t, q(t), q(t)) be the lagrangian
of some corresponding system with variables ¢, q, §. Let Q* € C*([a, b] x R™ x R™) be a function of the same
system of variables. Then if:

S 1@ (haa)] =0 e o)

then Q* is called a conserved quantity.

We see that this condition is equivalent to the quantity Q* being constant across the interval [a,b] by
the Mean Value Theorem. Now we have a concrete condition in mind when studying conservation, we can
focus on building up tools to prove its correspondence to symmetry.

Definition 4.2 (Infinitesimal Generators). [3][ p. 208] Let 6(t,q;e) be a one-parameter symmetry for a
lagrangian with the form L(t,q,q). Then we call:

00

0= (t,a;0)

The infinitesimal generator of 6.

The exact role this quantity plays becomes apparent when applying Taylor’s theorem to the corresponding
transformation, but they can be thought of as a manner of approximating a transformation at the first
order. We expect transformations that are not symmetries to produce a difference in functional output, and
this difference can be characterised by the transformation’s infinitesimal generators. Equipped with these
definitions, we are now ready to state and prove Noether’s Theorem.

13



4 NOETHER’S THEOREM

Theorem 4.1 (Noether’s Theorem for time-dependent Lagrangians). [3/[ pp. 210-211] Suppose a twice
continuously differentiable lagrangian L: [a,b] x R™ x R™ — R of the form L(t,q(t),q(t)) has symmetries
with infinitesimal generators (,n. Define:

oL t
pi = 87(]'2-’H: ;pi%’ - L
Then along any q(t) that extremises:
b
I = [ £it.q
a
the quantity

n
> pimi — H¢
i=1

18 conserved.

Proof. [3][ p. 209] We focus on the case of n = 1 for clarity. Consider now a functional of the form:
B /
1) = [ Loy
Where [a, 8] C [a,b]. Define the following one-parameter symmetries:

X =0(z,y;¢),Y == tp(x,y;¢)

Using Definition 4.2 and taking |¢| sufficiently small, we can make a Taylor expansion:

00

X =0(z,y;0) + 5%‘(@@;;0) + O(e%) = 0(z,y;0) + e + O(?) = 2 + X (4.1)
0

Y =¢(z,y;0) + 8%‘(%%0) =+ (’)(52) =(x,y;0) +en+ (’)(52) =y+eYy (4.2)

Let a. = (v, y(a);e) and B = ¥(B,y(B);e). Supposing I[y] is stationary at y is equivalent to having
a difference of functional outputs over any space of paths being O(g?), as in Section 2.2 when deriving the
Euler-Lagrange equation. This is a weaker condition than what we have for a variational symmetry, which
is no difference in functional output. Computing directly we have:

Be B
IlY] — Iy :/ [,(X,Y,Y')dX/ L(z,y,y)dz

B+eX1 B
:/ E(X,Y,Y’)dX—/ L(z,y,y)dz =0 (4.3)
a+eXo «

By Theorem 3.1, we know that Y is extremal, and will also satisfy the same Euler-Lagrange equation
as y due to the invariance of the lagrangian. Equation 4.3 is precisely a free-endpoint variation problem as

discussed in Section 2.2.3, and as both Y and y satisfy the Euler-Lagrange equations via extremality, the
only condition that remains is the Free-endpoint condition (Equation 2.4):

z=p
pAY (x) — HAX (x) =0
Relation 4.1 and 4.2 for sufficiently small ¢ yield:
B
(qp—CH)| =0

14



4 NOETHER’S THEOREM

As [o, 8] was an arbitrary sub-interval of [a, b], we have that:
(np — CH) = const. Vz € [a, b]

d
= g[np—CH]:OVxe[a,b]

And thus np — (H is a conserved quantity.
O

Noether’s Theorem not only clearly outlines the link between symmetry and conservation, but also
explicitly provides a formula for the conserved quantity. Treating empirically derived laws as the result of
an underlying theory allows for a more axiomatic treatment of mathematical physics and is an excellent tool
for formalising intuition in classical mechanics. To see this in action, we must briefly discuss the following
principle:

Theorem 4.2 (Hamilton’s Principle). [5/[p. 84] The evolution of a Newtonian system q(t) over a time
interval [a,b] with lagrangian L(t,q,q) is that which extremises the action functional:

b
Ilg] = / (1, q, &)t

We will not prove Hamilton’s theorem in this section for the sake of brevity, but the general principle
is useful: the paths objects in the physical world take will always extremise some functional, and hence
will satisfy the Euler-Lagrange equation. This also establishes a link between the physical laws of a system
and its lagrangian — the equations governing the evolution of the system are precisely the Euler-Lagrange
equations. This allows us to apply Noether’s theorem to a wide variety of situations. We will look at two
pedagogical examples in mechanics.

Example 4.1 (Conservation of linear momentum). Consider two particles of masses mj, ms with x-
coordinates 1,29 respectively undergoing a 1D collision with no further external forces and gravitational
attraction neglected. The canonical choice of lagrangian for this interaction is:

1 1

L(t,x1,x2,21,272) = §m11"12 + §m2f22
‘We consider the linear transformations:
T = 9(t,m1,x2,x'1,:é2;5) =t

X1 =1(t, x1, 20,21, Z056) = a1 + €

Xo = a(t, x1, 20,21, Z256) = 22 + €

It is routine to verify these are valid one-parameter symmetries for £ and the corresponding action functional.
We calculate the infinitesimal generators:

00
(= 5 =0
El(t,....42:0)
_ 9 _
m =—5— =1
Oe (t,...,72;0)
_ Oy _
M =—F%— =1
88 (t,...,z'z;O)

The canonical momenta are given by p; = m121, p2 = max2, and we need not calculate the Hamiltonian
because ¢ = 0. By Noether’s Theorem:

mix1 + mexs = const.

Which is Newton’s law for conservation of momentum. The symmetry we started with has a very natural
interpretation: we are simply shifting the positions of each particle along the x-axis. Intuitively, we can see
that no matter how we translate the particles along the axis, their motion is uniquely determined by their
initial velocities, and as a result the total momentum of the system is conserved.
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Example 4.2 (Conservation of angular momentum). Consider the set of transformations defined in Example
3.1, along with the same lagrangian. Again calculating infinitesimal generators, we have:

=2 =0
(t,q;0)
m :% =q2
9 (1.q0)
2 :% =—q
9 |(1.q0)

The canonical momenta are p; = mqi, p2 = mgs, so Noether’s theorem states:

mqiq2 — mgaq1 = const.

By fixing the planetary orbit to the g1gs-plane, we can calculate the system’s angular momentum using
the formula L = q A p:

i j ok ) A
L=|qg ¢ 0[=10)+7(0) - k(mgigz — mg2q1) = (const.)k
mqr mgz 0

So |L| is constant, and thus the total angular momentum of the system is conserved. This result has a
particularly striking implication in astronomy: The Earth is gradually slowing down. It is known that the
Moon is slowly drifting away from Earth, but this suggests an increase in the angular momentum of the
Earth-Moon system — but we have just proven that this is a conserved quantity, and thus the Earth must
lose angular momentum to compensate, slowing down in the process. The relationship between conservation
and symmetry is one of great pedagogical value, richness, and evidently, interplanetary-scale.
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