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1 Introduction

Squaring the circle is a problem that fascinated ancient Greek mathematicians. The problem
states: can one construct a square that has the area of a given circle with a finite number of
steps using just a compass and straightedge. For example, the unit circle and square below
both have an area of .

NG

In 1837, Pierre Wantzel proved that for this to be possible, m must be an algebraic number.
Almost 50 years later, Ferdinand von Lindemann proved that m was transcendental, showing
that this construction was impossible. In this essay we will discuss how the first transcendental
numbers were constructed using sequences of rationals that achieved such good approximations
that the numbers could not be algebraic.

We will extend this idea in the spirit of the well known Dirichlet’s approximation theorem. For
an irrational «, there exists infinitely many % such that

a—=< .
q| ¢

We shall see that in fact, for most numbers, we cannot do much better than an exponent of 2.

p‘l

2 Algebraic and transcendental numbers

The theory of transcendental numbers emerged as a profound extension of number theory in
the 19th century. While algebraic numbers had been well studied, the existence of numbers
beyond this was an open question until Joseph Liouville’s work in 1844. Liouville’s theorem
provided a way to distinguish certain numbers as transcendental. By establishing a fundamental
bound on the approximation of algebraic numbers by rationals, Liouville not only proved that
transcendental numbers exist but also constructed the first explicit examples.

Definition 2.1. A number real number « is called algebraic if it satisfies an equation of the
form
ko + k1o + koo + ... + kpa™ =0

with integer coefficients, not all zero. A number that is not algebraic is called
transcendental.

Definition 2.2. The degree of an algebraic number « is the smallest n € Z* such that «
satisfies an equation of degree n.



We see that a rational number g is algebraic with degree 1 since gz —p = 0.

Theorem 2.3 (Liouville approximation theorem). For any algebraic number « of degree n > 1
there exists C(a) such that

a—=>—
ql  q"

p‘ C
for all rationals g, q > 0.

Proof. (Baker 1975, p. 1). Let f(x) € Z[z] be a polynomial of degree n for which f(a) = 0. By
the Mean Value Theorem see that for any rational we have

|f(a) = f(p/a)| = | F/(d)| | — p/a]

for some d between p/q and a. Recalling that « is a root of the polynomial yields

\f(p/a)| = | (d)]|a—p/q|.

Clearly the next step is to deal with the derivative, notice that we want to show ‘a —p/ q} >
1/cq™. This is clearly true if ‘a —p/q’ > 1 thus we can assume that ‘a — p/q} < 1. Since f is a
polynomial we know that f’ will be as well, therefore on some finite interval we guarantee that
bounds exist. Let ¢ be a positive integer such that ‘f/(x)‘ < ¢ whenever |a — x| < 1. We also
multiply by the integer ¢" leaving us with

|q"f(p/q)] < cq™ |a—p/q|.

For any rational f(p/q) # 0 since otherwise oz would satisfy an equation with degree less than
n. Thus the integer ¢" f(p/q) is at least 1. To see that it is indeed an integer it suffices to
substitute p/q into an arbitrary polynomial of degree n and multiply through by ¢™. The result
follows immediately by setting C' = %

O]

With this result in hand, Liouville provided the first example of a transcendental number.
Proposition 2.4.
S|
l= Z Tomt is transcendental.

m=1

Proof. (Liouville 1851) Suppose [ is an algebraic number. Clearly [ cannot be rational since it
has a decimal expansion that is neither finite nor recurs. Thus [ has degree n > 1. For k € ZT

define py, g as:
1

Dk = 1Ok!(1él! + 102 + et ﬁ) and g, = 10
Note that both p; and g are integers. We can now estimate [ by 5—: as follows
Pk — 1
‘l K m:Zk—i-l 10771!

1 1 1 1

- 10(k+1)! (1 + 10k+2 + 10k+210k+3 + 10k+210k+310k+4 T )
1 1 1 1

< 710(’9‘*‘1)!(14_1704_17024_1703—’””)

. 10/9

10k+1)!

2

< {oir



By the Liouwille approzimation theorem, there must be C' such that for all k,

2 C
Lot ~ (107

It then follows that 5
2 o 1M G+1-n)
C

This is a contradiction for sufficiently large k since C is a fixed finite value, hence [ is transcen-
dental. O

In light of this example we define a class of numbers, the Liouville numbers, defined to be all
those that can be approximated by rational numbers with extraordinary accuracy.

Definition 2.5. A number z is a Liouville number if for each n € Z* there exists integers p
and ¢ such that

1
<— and q>1.
qn

0< |z —=

q

:

Our goal is to generalise the method employed in proposition 2.4 to show that all Liouville
numbers must be transcendental. Some care is required, it is not immediately obvious from the
definition that a Liouville number cannot be rational.

Lemma 2.6. All Liouville numbers are irrational.

Proof. Suppose for a contradiction that z is a Liouville number and that z = 5 where ¢, d are

integers and d > 0.

c_p|_lea—dp|
d ¢ dg

It is clear we cannot have |cq — dp| = 0 as we would violate the left inequality in definition 2.5.
Since we know it is an integer we have that |cq — dp| > 1.

eg —dp| 1
dg — dq

Recall that ¢ > 2, thus q% < ﬁ. We then see that as long as n > 1 4 loga(d) we will have

Icq—dp|>i 1 1
dg  — dq -

Z277,1 n’
g q

Lemma 2.7. All Liouville numbers are transcendental.

Proof. Let us suppose that x is a Liouville number that is algebraic of degree k. Since z is
Liouville, for all n € Z™ there exists p,q € Z with ¢ > 1 such that

p

0< w—‘<.
q

By lemma 2.6 we know that it must be irrational and so & > 1. This allows us to use the
Liowville approximation theorem to guarantee that there exists some C such that



for all p,q € Z where q > 1. It then follows from ¢ > 1 that we must have

1
> qnfk > 2nfk'

However, from the assumption that z has fixed degree k, we can choose n € Z* such that

2n > % Leading to the contradiction that we must have
1 1
— > ok
C - C
O
It seems we now have a way to check if some numbers are transcendental by checking definition
2.5. However, it is not immediately clear how we would check this for some arbitrary number,
or if it is even useful to try. We have not proven the converse of the statement so it also remains

to be seen if there exist transcendentals that are not Liouville. We have a general property for
Liouville numbers, we utelise this to get a handle on the size of the set.

Theorem 2.8. The set of Liouville numbers L has Lebesgue measure zero.

Proof. (Oxtoby 1980, p. 8). Recall that definition 2.5 tells us that for all n € Z* we will have
a pair p, g such that the inequality holds, hence we can write

N0 U (G520 )

Since L is constructed as the intersection over all n, it is clear that we must have
o0
LC|JUng
q=2
For any two positive integers m and n we have
LN (_mam) - U Un,q N (_mvm) = U |:Un,q N (_mam)] - U U (5 - q?y&'*’ q?)
q=2 q=2 q=2p=—mq

Thus L N (—m,m) can be covered by a sequence of intervals. For n > 2 we can find an upper
bound for the length.

00 mq 9 0o 9 mq
> > qn:Z;qn Yo o1=>
=

oo
q=2 p=—mq p=—mq q=2

4m 2 ./ 4m q =1
1 + " < Z 1 + " = (4m +1) Z 1
q=2

q=2

>~ 1
< (4 1 dr = (4 1 .
<Gm+1) [ o de = am 1) mt

2—n 0
x ] _4m+1
-n

1

So for any choice of m we can find a sufficiently large n such that L N (—m,m) is covered by a
sequence of intervals with total length less than an arbitrary e. O

Given that on R the transcendentals have full measure it is clear we are still far from any
meaningful classification. Currently we have only considered numbers that have infinitely many
good approximations for any fixed exponent of q. A potential improvement could be to specify
a bound.



3 Irrationality Measure

Consider a real number «. The question of how the difference

changes for choices of p € Z and q € ZT is one of great importance in number theory and its
applications. Of course, since Q is dense in R there will always be some p and ¢ such that the
difference is as small as we like. This is not particularly interesting and is why we will instead
focus on how small we can make the difference relative to q.

We have already seen in the previous chapter a specific use of this, more generally we will

consider .

a-f<
ql q"

for different values of u and determine if there exist finitely or infinitely many solutions %. We

want to see how large we can make p before « in a sense becomes badly approximated by

rational numbers.

0<

Definition 3.1. Let o € R. The irrationality measure of « , denoted u(«), is the supremum
over real p > 0 such that the above inequality is satisfied by an infinite number of integer pairs
(p,q) with ¢ > 0.

It follows that for all € > 0 there exists some C'(«) > 0 such that for all rationals % we have

C

o — p > .

Since values larger than p only admit finitely many rational solutions to the inequality, we
guarantee that there will be some constant small enough to trump the best approximation.

Note that this is almost identical to the statement of Liouville approximation theorem. Thus
we have an upper bound for algebraic « of degree n, pu(a) < n. What about a lower bound?

Lemma 3.2. Suppose o € Q. Then u(a) = 1.

Proof. Suppose that a = § where a and b are coprime.

p‘

q

_ |ag — bp|

0
< bq

Observe that by Bézout’s lemma the equation ag — bp = 1 has a solution (pg, qo) that can be
computed using the extended Euclidean algorithm. We can now produce other solutions (p, q)
by setting p = po + at and ¢ = qo + bt where t € Z. Thus we have infinitely many solutions
(p, q) exist for

It follows that p(a) > 1.

Since |agq — bp| is non zero we also get that for all ¢ > 0 and for any 0 < C' < %

D 1 C
“ q' g~ g
for all rational %. Hence p(a) <1 and the lemma follows. O

5



Lemma 3.3. Suppose o € R\ Q. Then p(a) > 2.

Proof. This follows immediately from the Dirichlet’s approximation theorem and was seen in
analysis 1. See (Robinson 2022, p. 13). O

We see then that if o is an algebraic number of degree n we must have 2 < u(a) < n. It is
natural to ask if we can improve these bounds. This question was first answered by Axel Thue,
who in 1909 made the first improvement to Liouville’s upper bound, p(a) < 5 4 1. Over the
course of the early 20" century several more improvements were made to the upper bound.
The matter was finally laid to rest in 1955 by Klaus Roth who proved the following.

Theorem 3.4 (Roth’s theorem). For any e > 0 and « algebraic, the inequality

1
q2+£

b

0< a—‘<
q

has only finitely many solutions.

These improvements presented a new challenge. We recall that in the proof of the Liouville
approximation theorem our constant C' was constructed by bounding the derivative of the
polynomial, | 1! (x)‘ < % What is key here is that for a specific « the proof gives us an explicit
bound that only depends «.

Lemma 3.5. An explicit value for the constant in the Liouville approximation theorem is
C(a) = (n?(1+|a)"1H)~t. Where H is the maximum of the absolute values of the coefficients

of f.

Proof. Suppose f(z) = ap+ a1z + -+ apz™. Set H = max{|ag|,|ai],...,|an|}. Since we have
that | — x| < 1 by the reverse triangle inequality we must have |z| < 14 |a|, where importantly
the right hand side is greater than 1. It then follows that

|f(@)| <H+2HQ+ o) +3H1 +|a])* + -+ nH(1+ |a)" ! <n*(1+|a])" 'H.

O]

This shows that Liouville’s result was effective. In contrast, the later improvements were not.
The issue is already present in Thue’s improvement, in order to show that there are not too many
good approximations £ Thue starts with an incredibly good one 7;—8. He shows that this very
close approximation excludes other similar or better ones. However, it can also be the case that
this Z—g simply does not exist, which would also give the needed result. The ineffectivity stems
from the fact that we do not know from which case the conclusion is from. A good introduction
to Thue’s proof can be found in chapter 5 of Silverman & Tate (1992) which proves the result
for o = /b. In 1964, Alan Baker found an effective bound for the case b = 2.

Theorem 3.6. Baker (1964) For all rationals p/q (¢ > 0) we have

106
2 - p] L 10
q q2.955

Let us take stock of where we are for some o € R.

u(a) =1 « is rational
uw(a) =2 «is algebraic of degree n > 1

u(a) > 2« is transcendental



We now have a much better classification, all that remains to be seen is exactly how many
transcendentals are mixed in with the algebraic irrationals.

Lemma 3.7. The set of real numbers with irrationality measure greater than two has measure
zero.

Proof. 1t suffices to consider z € (0,1) NR \ Q since we can just shift rational approximations
by some integer. The inequality is satisfied by infinitely many g for some € > 0.

p p
- = <z <=+ .
g q2te g ¢*te

We can reformulate this inequality by considering

q
D I p 1
ORI U (e )
q ( ) pLJO q q2+5 q q2+6

Note that the inequality being satisfied for infinitely many % is equivalent to x € I, for infinitely
many ¢. It is clear that

2(g+1)

5. and so for all € > 0 the sum Z AN Ey) < oo.
q

q=1

A(Eq) =

It now follows by the first Borel-Cantelli lemma that the set
E ={z€(0,1) : 2 € E, for infinitely many q }

is a set of measure zero. ]

We have shown that almost all transcendental numbers have measure 2, the aim of the next
chapter is to provide a concrete example.

4 Continued Fractions and e

The number e is one of the most important mathematical constants, appearing naturally in many
different fields of mathematics. In this chapter, we explore the continued fraction representation
of e and its role in estimating its irrationality measure. Which we will show to be pu(e) = 2.
Whilst irrationality was already known to Euler in the 18th century, it was only in 1873 that
Hermite was able to prove that it was also transcendental.

Theorem 4.1. ¢ is a transcendental number

Proof. The proof given here follows the main ideas in (Havil 2012, p. 191) which seeks to
replicate Hermite’s proof. Alterations have been made to the derivative cases in the latter half
of the proof, these were motivated by (Baker 1975, p. 4). Suppose f(x) is any polynomial in x
and define

Pa) =3 /)
k=0

This is clearly a polynomial of the same degree as f(z). We see also that f(z) = F(z) — F'(z)
and hence

i(ef"’”F(x)) =e "F'(z) — e "F(x)

dx
— e (F(@) - F'(@)) = — " f(a).



This yields N
e’”/o e tf(t)dt = e"[—e "F(t)]§ = e*F(0) — F(x). (1)

For a contradiction we will assume that e is algebraic. So we have some polynomial of degree
n with integer coefficients (ap # 0) such that

ap+ are + aze’ + -+ ane™ = 0.

Evaluating (1) at k, multiplying by a; and summing over k gives us

z": are” /k e tf(t)dt = F(0) z”: ape’ — z”: arF (k)
k=0 0 k=0 k=0

We now use the assumption to reach

n n k
ZakF(k‘) =— Zakek/ e tf(t)dt.
k=0 k=0

0

Our aim now is to choose a polynomial that will eventually lead us to a contradiction, for a
prime p > n + |ag| define f(t) of degree np +p — 1 by

Pt — 1)P(t —2)P...(t — n)P
(p— 1! ‘

Note that on [0,n] we have the following crude bound on the size of f(t).

ft) =

nP~Y(nPnP ... nP)  pPtPl

HOls—4 -5 ~ G-

Thus

n

k n k
Zakek/o e T f(t)dt SZ\ak\ek/O et | f(t)] at
np+p—1
< k2|ak|/ tn -

n n

nptp—1 np+p—1
. / S Ry -
e a| t= |ag| (¢* = 1).
(p—D! = (p—D! =

dt

Since the coefficients a; and degree n are fixed we see that we can choose a large enough p to
ensure the factorial in the denominator reduces the expression below 1. Our goal is now clear, if
we can show that >_;_, axF(k) has absolute value > 1 we will have the contradiction we desire.
We need to evaluate F'(k) for 0 < k < n. Let us first consider F'(0).

We decompose f(t) = a(t)b(t) where

a(t) = . and b(t)=(t—1)P...(t —n)P.

It is clear that a(?(0) = 0 for all 7 except i = p — 1 where we have a?~1)(0) = 1. Applying the
general Leibniz rule for differentiation to this product yields

=5 Qo

1=



Hence

F(0) :if(j)(o) - izjz (‘Z)a(i)(o)b(ji)(O) - i < J >b(jp+1)(o).

jaa W1

We see that for all i > 1, b)(t) is a multiple of p. However, in the case when j = p — 1 we
have b(0) = (—1)?...(—n)P. Since we chose p > n we must have that b(0) is not divisible by
p. Thus F(0) is an integer that does not have p as a factor. We can proceed similarly for the
other values of k. We decompose in a similar fashion, f(¢) = a(t)b(t) where we have removed
(t — k)P from b(t).

(t— k)P 1
a(t)=-—"== and b(t)=tP " (t—-1P...(t —n)’.
0= =1 ()= (=17 (=)
Note that here () (k) = 0 for all i except i = p where a® (k) = p. We now see that for
1 <k <n we have

= 3190 = 53 (1) im0 -3 (e

j=0 7=0 =0 Jj=

Showing that F'(k) is an integer that has p as one of its factors. We can now consider
Y h—o (k) = agF(0)+> ;4 apF (k). Since p > |ag| we have that p cannot divide agF (0). So
if we were to divide the entire expression by p we would be summing a fraction and an integer,
showing that ) ), arF (k) is not 0. Since it is also an integer, it must have absolute value
> 1. O

A key tool in the study of diophantine approximation is the notion of continued fractions, which
provide a way of generating the best possible rational approximations to a given number. The
connection between continued fractions and the irrationality measure is visible through the
bound

<

1 1
'oz _ b < 5
an dndn+1  Gn+14y
This inequality suggests that we may be able to find estimates from the irrationality measure
by analysing the growth rate of g,.

Definition 4.2. A simple continued fraction is of the form

1

ag +
a +
! 1

az + ——
where the a; is a (possibly infinite) sequence of positive integers and are called the partial quo-
tients. In a more compact form we can express the simple continued fraction as [ag; a1, ..., ay).

Notice that each truncation will yield a new rational number, by considering the first few we
begin to see a pattern.

ap
T(]:Ta
1 apal + 1
T1:a0+7:L,
al al
ap(araz + 1) + ag
T =ag + = .
2 0 a; + = araz +1



We see that both the numerator and denominator seem to depend on the previous fraction,
indicating we should try and define a recurrence relation for them. From the above one can
guess that

p-1=1 po=ap and ¢-1=0, ¢=1,

Pk+1 = Qk+1DPk + Pk—1,
Qk+1 = Qk+19k + Gk—1,

for0<k<n-—1.

Lemma 4.3. The fraction Z’; is the truncation Ty, for all k.

Proof. (Rockett et al. 1992, p. 2) Suppose that this is true for all truncations of order < k.
Consider Ty 11, we can reduce this to our assumption by considering a new last term of ay +
This gives us

1
Okt1 "

(ak+ ! )pkq + Pk—2

Ak41

(ak + 1 )qu + k-2

Af+1

where the quantities pg_1, pr_2,qr—1 and gx_s are known by our assumption. This fraction is
the same as Tj41 so we see that

1 Pr—
Ty = (ar + ak+1)Pk—1 +Pr-2  GkPr-1+Pr-2t akﬁ _ Qg41Pk +Dk—1  Pk+1
1= = L = :
(ar + gy )ah-1+ @2 arGr-1 0k =24+ 550 akpage Gk Gk

O

We call the fractions z—: the convergents. A simple algebraic check gives us that they also satisfy

k—1
— : Pk Pk-1 —1
Pkqk—1 — Pk—19k = (—l)k 1 or equivalently — = (=) )
k. k-1 qkqk—1

One can use these to show that the convergents form a Cauchy sequence. The oscillating sign
shows they approximate the limit alternately from above and below.

Lemma 4.4. For k > 1 we have that qppr_o — PrQr—2 = (_1)’6—1%,
Proof. From the recursive relations we found above we see that

QkDPk—2 — DkQh—2 = Ph—2(akqr—1 + qk—2) — Qr—2(arpr—1 + Pr—2)
= ak(Qh—1Pk—2 — Ph—1qk—2)
= ak(—l)kil.

Where the final equality follows from the previous lemma. O

Definition 4.5. We call a rational § a best approximation of « if |ba —a| < [ga — p| for
any rational g # ¢ where 0 < ¢ <b.

Theorem 4.6. Fvery best approximation to o is a convergent of the simple continued fraction

of a.

Proof. We follow the idea set out in (Lang 2012, p. 9). Let o = [ag; a1, az,...]. From before
we know that the convergents approximate « from above and below

ag @

sle

N
SSe
2[Se

10



Suppose 3 is not a convergent. We will deal with different cases as to where it could be. To

start with, suppose § < Z—g.

| — ag| <

a
Y <y
o b’_

a—Z‘:|ba—a|,

which contradicts that { is a best approximation. Now suppose it lies at the other end, that
a p1

b > ol

b 1 1

a —
@b g ar

b

p1 a

bao—al=0b
\ \ i

o — > b

By the continued fraction expansion we have that |a — ag| < % So in tandem with the above
we again get a contradiction | —ag| < |ba —al. We are left with a single case, that § lies
between two convergents. With out loss of generality assume we are in the situation below.

Po Pl Q -+ Pkt1 4 Pk-1 PL
q0 qk Qk+1 b qk—1 a1
Then
I Pk DPe—1 a  pp—1 1
Qkqr—1 Qe qr—1 b qr—1|  bgr—1

We have then that g, < b. With a similar argument we see that

1
qkqk+1

-

1
qk+1

Leading to |gra — pi| < . It remains to find an estimate on how well « is approximated by
% like before.

1
T Gkl

a

b

Pr+1 a

bao—al=b
| | s D

o — > b

Combining these together gives

1
gk — pr| < —— < |ba — a
dk+1

which is a contradiction since g < b.

O]

We note that the converse of this is also true, and can be proven by induction. We will not
need this result but refer the interested reader to (Lang 2012, p. 9). This theorem gives us an

essential tool in dealing with convergents, one we will put to immediate use. Recall that our

P

aim is to study ‘a — ¢ |» we can show that any g that admits a sufficiently good approximation

is necessarily a convergent.

Lemma 4.7. For integers p,q where ¢ > 0, the inequality

implies that % is a convergent of the continued fraction of a.

11



Proof. 1t suffices to show that % is a best approximation of o . Suppose we have § where d > 0
such that

1
da —c| < —pl < —.
|doe — | < |ga — p 5

Comparing our two estimates gives that

1 c p c P 1 1 q+d
—<|l=-f<la-= e — 4 = =2
0 = |d q‘— “Ta +‘O‘ q‘ 20d 28 T 247

From which we can conclude that ¢ < d and so % is a best approximation to «. ]

We are now in a position to provide a concrete link between the simple continued fraction of «
and its irrationality measure.

Theorem 4.8. The irrationality measure of an irrational number o with simple continued

fraction expansion « = [ap; a1, as,...] and convergents Z—: s given by
lo loga
p(a) =1+ limsup O8ntl _ g 4 lim sup 08 dn+l,
n—00 og qn n—00 10g dn

Proof. A proof of this result is presented in (Sondow 2004, p. 5), though with some details
omitted. We seek to reconstruct this proof in totality. Define A\, by the equation

‘ _pa|_ 1
dn qﬁ”

Recall that the convergents approximate « alternately from above and below. As they satisfy
(=1k!

the identity 2 — 2=l — =) we gee that we must have | — 22| < —L— Tt follows that
qk dr—1 qrqr—1 an dndn+1
1 1 1
- = 'Oé — Pn < < —
qn" dn gnqn+1 an

which shows that A, > 2. We have that A := limsup,,_,,, A\n > 2.

Suppose that p(a) < oo, we claim that A < p(a). Indeed, given € > 0 there exists @ € N such
that for all p € Z, ¢ > ) we have

P 1
=3 Faw
We now choose N € N such that ¢y > Q. It follows that for all n > N,
1 1
A:‘O‘_pn e

Implying that A, < p(a) + € for all n > N. From this we see that

A =limsup A\, < p(a) +¢

n—oo

for all e > 0.

Now suppose that A < oo, we claim that u(a) < A. Note that for all € > 0 there exists N € N
such that A, < A+ ¢ for all n > N. We argue for a contradiction, suppose A + ¢ < u(a). Then
there are infinitely many solutions g to




Restricting to solutions where ¢ > max(2'/¢, qy) yields

p‘ < 1 < 1 < 1

a—=|< — < —.

a| = ar¢" 200 T 2¢7

It follows from lemma 4.7 that these g must be a convergent of a. We have g = % for some

n > N. But this implies that

1 ' Dn 1
— =la-22| < .
g o A

Which contradicts that A, < A+ ¢ for n > N. Hence pu(a) < A+ ¢ for all ¢ > 0. We conclude
that
limsup A, = p(a).

n—o0

Note that since % are convergents so by lemma 4.4 we have

> Pnt2  Pn| _

Gni2 G|  Gni2dn

Gni2 Gn+2 S 1 S 1
(@nt2Gni1 + @n)@n — (Gni1 + @) 2Gnqn+1

‘ Pn
o Pn
n

Where the second inequality follows by dividing through by a,+2 and using the fact it is greater
than or equal to 1. We have that

1 1 1
5 < < .
2qnGn+1 qn" dndn+1

Taking logs and dividing through by log ¢, vields

lo log 2 lo
1+ an+1<)\n<1+ g + g(]n-i-l7
log ¢ logg,  loggn
thus |
p(a) =1+ limsup 08+l
n—oo  10gqn
The second formula follows immediately since ¢n4+1 = an+1qn + gn—1 = an+1qn(1 + o(1)). O

Lemma 3.3 gave us a lower bound for p(«), 2. Thus if we can show that the limsup tends to
zero then we would immediately know that the irrationality measure of « is 2.

Lemma 4.9. If the partial quotients of a satisfy an = e°™ as n — oo then pla) = 2.

Proof. Since a; > 1 for all + € N and qx1+1 = ap+19x + qx—1 we see that g, > F,, where F), is the
n'" Fibonacci number. Recall from Binet’s formula that F, is asymptotic to ", where ¢ is the
golden ratio. Hence log F}, is asymptotic to nlog . It follows that

1 1
0 < p(a) — 2 < limsup 08 dnt1 < lim sup 98 n+1

——— =0.
n—ooo  l0gqn n—ooo log Fy,

O]

We are now at a point where we have that e is transcendental and also a way to calculate
the irrationality measure from the continued fraction. We would like to determine what the

coefficients are:
1

e=ag+
ay +



Clearly ag = 2, rearranging gives us that

asz+ ...

We have that e_% = 1.3922... and so a; = 1. By repeating this computation repeatedly we
begin to see a pattern emerge and we can conjecture that

e=1[2:1,2,1,1,4,1,1,6,1,1,8,...].

This result was originally proven by Euler, the most common proof involves the continued
fraction for tanh(x). The proof presented here is from Cohn (2006) which seeks to replicate the
argument by Hermite using Padé approximants. The reason for this choice is largely because it
relates nicely to our proof of e being transcendental as we utelise similar polynomials. However,
we also have the benefit that the proof only relies on properties of e and does not need much
else.

A Padé approximant to e* of type (m,n) is a function Z Ejg where p and ¢ are polynomials with
degree m and n respectively. We have that the first m + n 4+ 1 coefficients in the Taylor series

of Z 8 agree with those for e*. That is, as z — 0, the rational function satisfies

b Z) _ ez+0(zm+n+1).

Equivalently we could ask for the function

q(z)e* —p(z)
sm+n+1
to be holomorphic.
The Padé approximant of type (m,n) is unique, consider if % is another. We see that
p(z) r(z) _p(2)s(2) —q(2)r(2) _  mins1
=0(z ).
q(z)  s(z2) q(2)s(z)

Note that p(2)s(z) — q(2)r(2) has degree at most m + n but vanishes to order m + n + 1, this
gives us that it must be 0 and thus the two approximants are the same.

The Padé approximants give us a new way to approximate a power series. Since we wish to
approximate e, we should set z = 1 in the Padé approximants for e*. Take the approximant of

type (1,2); X
ria(z) = ————
12(2) 1— 2z + {22

We now see that
1
= 2—1—71 =1[2;1,2].

14 =
+2

8 2
N)=-=2+=
7"1,2() 3 —|—3
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In fact, following the same process for other types reveals

ri,1(1) = [2;1],

ro1(1) =1[251,2,1],

raa(l) = [2,1,2,1, 1],
ras(1) = [2,1,2,1,1, 4],
rsa(1) = [2,1,2,1,1,4,1, 1].

It appears that the type (n,n),(n+1,n) and (n,n+1) Padé approximants are giving truncations
of the expected simple continued fraction. Recall that for a function to be holomorphic we must
be able to express it as a suitable integral. Hermite realised that the numerical pattern shown
above could be linked to the simple continued fractions by means of some specific integrals.

Lemma 4.10. Let r(x) be a polynomial of degree k. Then there are polynomials q(z) and p(z)
of degree at most k such that

/1 T(l‘)ezmdl‘ — Q(z)ez — p(Z) )
0

Skl
With
q(z) = r(1)2F — ()P 4" ()2 —
p(2) = r(0)2F — 1 (0)2F 71 +7(0)2F72 —
Proof. This follows directly from repeated integration by parts. O

Given that we want polynomials p(z) and ¢(z) of degree m and n respectively, we take k = m+n
in the lemma above. Using the two explicit formulas above for p and ¢ and the fact that we
require deg(p) < m, deg(q) < n. We deduce that r(z) must have a root of order n at x = 0 and
a root of order m at x = 1. Up to a scaling constant we must have

r(z) = Az"™(x — 1)™

We make a choice! of A = i Setting z = 1 now yields

1 " (r — 1)™
J A I ]
0 n.

Let us now consider again the continued fraction we conjectured previously, albeit in a slightly
different form.
[1;0,1,1,2,1,1,4,1,1,6,1,1,8,...].

This is not in the form of a simple continued fraction however it can be easily seen that it is
equivalent to the one we had before. The reason for this alteration is that it makes it easier to
define the pattern. We have a3;1+1 = 2i and as; = as;+2 = 1. The recurrence relations are thus
given by

P3k = P3k—1 + P3k—2, 3k = q3k—1 T q3k—2,
P3k+1 = 2kp3k + P3k—1, Br+1 = 2kq3r + q3r—1,
D3k+2 = D3k+1 + D3k, q3k+2 = @3k+1 + q3k-

! Any choice works since we can simply rescale our functions however this particular choice was made because

4" (W) has integral coefficients.

it gives a cleaner solution. Note that

dz n
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We calculate the first few convergents to be

k]001 2345 6 7 8
pe|1 1 2 3 8 11 19 87 106
|1 0113 4 7 32 39

Note that EL is undefined but this is not an issue since we are just interested in showing

» q
lim Pk — ¢,
k—o00 K

We define the following three integrals, motivated by our discussion of the Padé approximants.

1,n _1\n
An = / 71; (x 1) ew dl’,
0 n!

1 ,.n+1 —1)"
B, = / W““’x dz,
0 n.

1 .n _ 1\n+1
C, - / Gl AP
0 n'

It is simple to see that Ag = e—1, By = 1 and Cy = 2—e. It can also be seen that gge—pg = e—1,
p1 — qgie = 1 and py — goe = 2 — e. This suggests:

Lemma 4.11. Forn >0, A, = g3ne — P3n, Bn = P3n+1 — @3n+1€, Cn = D3n+2 — @3n+2€.

Proof. We can reformulate these expressions just in terms of integrals by using the 6 recurrence
relations from before. Consider:

— Byu-1 = q3n—26 — p3n—2,
- Cn—l = {43n—1€ — P3n—1-

We see that

An = g3ne — P3n = (@3n—2 + @3n-1)€ — (P3n—2 + P3n—1) = —Bn—1 — Cp—1.
Similar calculations can be done to reach
Ap,=—-Bp_1—Cp_1,
B, = —2nA, +C,_1,
C,=B,—A,.

It now suffices to check these three relations. The third one is clear. To prove the first we apply
integration by parts to see

1, .n n 1, .n n—1 1, .n-1 n
B (x—-1)" x"(x—1) . " —-1)"
An = /O Te dr = —/0 We dr — 0 W@ dr = —Bn_l - Cn+1.
For the second consider

n _1n+l n—1 _1n+1 1) ™ —1)" n _1n+1
K R Ll e —

6([!

n! n! n!

_ in’n(l’ — 1)nea: o mn—1($ — 1)n6x + $n+1(‘r — 1)n€1’
n! (n—1)! n!

Where the second equality comes from using (z — 1)"*! = (z — 1)?(x — 1) and expanding.
Integrating both sides yields 2nA, — C,_1 + B, = 0. O
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Theorem 4.12. e = [2:1,2,1,1,4,1,1,6,1,1,8,1,...,1,2n,1,...].

Proof. Cohn (2006) The integrals A,, B,, and C,, tend to 0 as n — oo since we are integrating
over [0,1]. It follows from lemma 4.11 that

lim gge — pr. = 0.
k—o0

Thus for £ > 2 we have

O

It follows immediately from Lemma 4.9 that the irrationality measure of e must be 2 due to the
partial quotients only growing linearly.

5 A bound for 7

In the previous chapter we saw that we could analyse the irrationality measure of e precisely by
considering the continued fraction. Can we apply this approach to other known transcendental
constants?

It can be shown that 7 is transcendental? in a similar fashion to our proof for e. However
attempting to compute the first few partial quotients of the continued fractions yields

7 =[3:7,151,292,1,1,1,2,1,3,1,14,2,1,1,...].

Where there is no obvious pattern, currently it is believed that none exists. This prevents us
from using our previous approach, this is the case for most constants.

Unlike e (and related constants) most natural® transcendentals have poorly behaved simple
continued fraction from which is difficult to gain much information from. For this reason we
require a different approach, namely, Beuker’s treatment of Apéry’s proof of the irrationality
of ¢(3). The method we give here builds on the outline given in (Borwein & Borwein 1987, p.
366). We will provide an upper bound for the irrationality measure of {(2) and consequently
one for 7.

Lemma 5.1. Let r and s be nonnegative integers.

1 1 r,,S
ry
I/ dody={¢@) ~fs— g~ % r=s>0,
0.

Where d, = LCM(1,2,...,7).

Proof. We see that

1 1 xrys o0 1 1 N N S 1 1
dx dy = //:E”T"Sd:cd = < )
/0/0 1_ay HZ:O o Jo Y Y nz ntrtlntstl

=0

2This proof has been omitted, we refer the interested reader to (Baker 1975, p. 5).
3Natural in the sense that is has not been artificially created for this specific purpose.
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If r = s =0 it is clear this evaluates to ((2). If r = s > 0 we see that

11 0 2
oy 1 11 1
dr dy = S ((2) - e
/0/0 1—uzy v ;(n—kr) ¢2) 12 22 r2

Now suppose r > s.
1 pl o0
z"y® 1 1
drdy =
/0/0 1 -2y Y T;)<n+r+1n+s+1>
_i 1 1 1
L~ r—s\(n+s+1) (n+r+1)

n=

0
LA N DS A
S r—s\s+1 s+2 r)  d2

Theorem 5.2. ((2) = %2 is irrational.

Proof. (Borwein & Borwein 1987, p. 366) We begin by considering the Legendre-polynomial on

[0, 1], defined as
pn(®) = ade [ 7 (1—x)

In order to be able to apply the previous lemma we reformulate this as a polynomial of degree
n, note that we will have integer coefficients.

pn(z) = ;{Z}n;ﬂ:{) <Z> (—=1)Fgnth = kzn:o <Z> w(_l)kxk’

We now consider the following integral

e [ [ Oy,

Substituting in our reformulation of p,(x) as well as expanding (1 — y)™ allows us to employ
lemma 5.1. It follows that

Qo
[n| = |BnC(2) — a2
where «,, is an integer and
B " /n\ [(n\ (n+E)!
=3 () ()

It is clear that |I,| > O since the integrand is positive for all z,y € (0,1), to find an upper
bound we substitute in p,(x) and perform integration by parts n times with respect to z. This

yields
/ / 1 - xy)”* o

To estimate this integral we need to consider the maximum value of the function

z(1 —2)y(l —y)

11—y

flz,y) =

18



By an application of the AM-GM inequality we see the following

r(l—2y(l—y) _wy(—(z+y) +ay) oyl - Jry+azy) :vy(l—\/@)'

1—azy 1—azy - 1—ay 1+ Jay
Where equality occurs when = + y = 2,/xy, ie * = y. Using the substitution t = ,/xy for
t € [0,1] we see that the function f(t) = tQ&_tt) achieves its maximum at t = _1%\/‘?’ using

ordinary calculus. It follows that

zy(1—y)(1 —x) < (\@— 1>5.

1 -2y 2

We can now estimate |I,,| as follows

// 1_xy)r<jr1_x>nd:cdy< < 5_1> //1_$ydd (ﬁ”) ().

We also require some information on the size of d,, and 3,. Note that d,, is the product of all
prime p < n raised to the k such that p¥ < n. That is,

0< || <

log(n)
dy < leoi(p) =n" m(n )

p<n

Where 7(n) is the prime counting function. It follows from the prime number theorem that for
all A > 1 we must have n™(") < ¢4 This give us

dp, < 0™ < An,

To analyse (3, we first recall that n! ~ (%2)", which comes from a weak form of Stirling’s

approximation. We see that for large n we have

n\ (n\ (n+k)! nl(n + k)! N e N
(k:) <k>( n!k:!) - (k?!)3g(nli)!)2 ~n"(n+k) +kp 3k(n_k)2k 2n

Where the powers of e sum to 0 and so cancel out. We wish to find the value of k that maximises
this, so introduce the scaling k¥ = an. This yields

n

<n(n + an)*(an) 3% (n — an)2a_2> T ((1 +a)tteq () - a)2a—2> .

Where again the sum of the powers of n is 0 and so cancel out. It remains to find the maximum
value of

f(a) = (1 + Od)l+aa_30‘(1 _ a)?a—Q

for 0 < a < 1. The derivative can be computed and we find that we achieve the maximum at

o= @ We can then simplify the maximum as

) () e

2 2 2 2
<1+f>z<”f<1+\f>3 <1+f> e
2 2 2

_ (1 +2\/5>5.
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We reach the bounds

5 5
61n82<1+\@> " 5 < cgnc4<1+\/5) n.
2 == 2

The constants can be computed explicitly by using a stronger form of Stirling’s approximation,
but we will not need this here. Setting ~, = d2 3, and using the estimate for |I,,| gives us

< <\/52— 1>5”Cﬁ(i).

We want our upper bound to be of the form set out in the definition of irrationality measure,
we see that for sufficiently large n we have

1 _(\/5_1>5n
W \1+v5/)

Taking logs on both sides and using the estimate for d,, yields

nlog[(1+v5)/(V5 - DP _ logl(1+v5)/(v5— )]’

0<‘<(2)—3”

146 = = =1.092156--- > 1.
log(Bnd3) log{[(1 + v/5)/2]%¢2}
This concludes the proof since we have found an infinite sequence of rationals % that approxi-
mate ((2) too well for it to be rational. O

We note that this is not the fastest or cleanest way of proving the result, in fact, it is not
necessary to go through most of the estimates in the latter half of the proof. Showing that the
upper bound on the integral goes to zero alongside the bound for d,, is enough for irrationality,
see Beukers (1979).

The benefit of the proof shown above is that through the estimates we have explicitly constructed
a sequence that estimates ((2), we also know exactly what the value of § is. We can use
this sequence to show that other rational approximations cannot do better than a bound that
depends on J. Informally, although the ~, grow exponentially, the sequence is dense enough
such that we can always choose one close enough to whatever ¢ we choose.

Lemma 5.3. Suppose there exists a sequence of rationals {pn/qn} and § > 0 so that

’ _pa|_ 1

and the q, satisfy the growth rate

dn < gn+1 < qufo(l)-

Then either for some n we have

P_Pn
q qn ’
or for € > 0 and a sufficiently large q
P 1
Q- q’ > gt
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Proof. This result can be found as an exercise in (Borwein & Borwein 1987, p. 376). We choose
n such that %qfl_l <g< %q,‘i. For some ¢’ > 0 we let

p| 1
- 5 T glt/ote

Suppose that p/q # pn/qn, then by the triangle inequality we see

1 P Pn 1 1
— < =—-— < + -~
qqn ‘q q quf“; q1+1/5+5
Thus o
1<
5+1/(5+5

We now use the bounds chosen at the start of the proof to see that

R I —
1/6+¢&" 2 (%)1/5+E/q1f6€

This yields a contradiction due to the growth rate restriction, the right-hand side is less than 1
for large q. O

We see that 1 + % = 11.85078...

Theorem 5.4. For p and q integers and q sufficiently large,

Additionally,

23.72°

Proof. By the previous lemma it can be deduced that, given € > 0, if

1

6 ¢ < qit1/o+e

for sufficiently large ¢, then we must have p/q = ay,/v,. So it suffices to check the inequality
for ay /.

Note that for small v > 0 and large n we have

(\/5_1 >5n
I, > 5 -V .

It follows that

5—1)/2 —v]>" 5—-1)/2—vP" 1 1
(V5-n/2—v™ (52— 1 1

Bn Tn v

Qn
Tn

>

]«2) -

Where the penultimate inequality can be checked by multiplying both sides by 82. The result
follows by scaling p/q by 6. The irrationality measure for 7 follows immediately since for large

4,

> P

r+p/d|” T &2

S 1 1
‘W +p/q\ g2x11.86°

m— —| =

p ' 1
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Variations of the technique shown here can be used to give upper bounds for the irrationality
measures for other constants such as ((3) and log 2. However none get close to 2 which is what
we would expect from lemma 3.6. The issue with the approach here is the presence of d2. Note
that if we were able to remove this term* we would have § = 1, so the irrationality measure
could be explicitly found using the constructed sequence.

The upper bound for 7 has been improved upon using more sophisticated versions of the argu-
ment exhibited here, but a precise value is currently out of reach. The table below gives some
historical bounds for p(7).

Upper Bound for pu(m) Reference Year

() < 42 Mabhler 1953
p(m) <20.6 Mignotte 1974
p(m) < 14.65 Chudnovsky 1982
p(m) < 8.016... Hata 1993
p(m) < 7.606. .. Salikhov 2008
p(m) < 7.103... Zudilin 2020

4Calculating 1 + ¢ on page 20 without the e? term yields 2
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