
MA141 Analysis Examples

Exercises. Prove or disprove that the following functions are continuous (on their natural domain):

1. f(x) = sin(x);

2. f(x) = k, where k ∈ R;

3. f(x) =
√
x;

4. f(x) = |x|;

5. f(x) = 1
x ;

6. f(x) = χ(0,∞)(x);

7. f(x) = χQ(x);

8. f(x) = x · χQ(x).

Solutions. Note that the following proofs are written as rough work; you should rewrite these in an
exam/assignment with your choice of δ at the top, before you rearrange |f(x)− f(c)|.

1. Let ε > 0. Then, if |x− c| < δ, we have

|f(x)− f(c)| = | sin(x)− sin(c)|

=

∣∣∣∣2 sin(x− c

2

)
cos

(
x+ c

2

)∣∣∣∣
≤

∣∣∣∣2 sin(x− c

2

)∣∣∣∣
≤

∣∣∣∣2(x− c

2

)∣∣∣∣
= |x− c|
< δ

Picking δ = ε, we have

= ε

So this function is continuous. (In an exam, put “Choose δ = ε” at the top, after “Let ε > 0”, but
you should use this kind of rough working to inform your choice of δ.)

2. Let ε > 0. Then,

|f(x)− f(c)| = |k − k|
= 0

< ε

So this function is continuous. (Note that the value of δ is irrelevant here, so just put “Choose
δ = 1” at the top, or any other arbitrary positive value.)

3. Let ε > 0. Then, if |x− c| < δ, we have

|f(x)− f(c)| = |
√
x−

√
c|

=

∣∣∣∣ x− c√
x+

√
c

∣∣∣∣
=

|x− c|
|
√
x+

√
c|

<
δ

|
√
x+

√
c|
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Observe that |
√
x+

√
c| ≥ |

√
c|, so

≤ δ

|
√
c|

so if δ = ε
√
c,

< ε

However, we divided by
√
c in the above, so this proof is only valid for c ̸= 0. For c = 0, whenever

|x− c| = |x| < δ, we have

|f(x)− f(c)| = |
√
x−

√
0|

= |
√
x|

=
√
|x|

<
√
δ

Picking δ = ε2, we have

= ε

which completes the proof.

4. Let ε > 0. Then, if |x− c| < δ, we have

|f(x)− f(c)| =
∣∣|x| − |c|

∣∣
≤ |x− c|
< δ

Picking δ = ε, we have

= ε

5. Let ε > 0. Then, if |x− c| < δ, we have

|f(x)− f(c)| =
∣∣∣∣ 1x − 1

c

∣∣∣∣
=

∣∣∣∣x− c

xc

∣∣∣∣
<

δ

|xc|

If we had δ = ε|xc|, we would be done; however, δ cannot depend on x, so we aim to eliminate x
from this expression.

If δ ≤ |c|
2 , then

|x− c| < |c|
2∣∣|x| − |c|

∣∣ < |c|
2

so by the interval property,

|c| − |c|
2

< |x| < |c|+ |c|
2
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|c|
2

< |x| < 3|c|
2

Then,

|f(x)− f(c)| < δ

|x||c|

≤ δ∣∣∣ |c|2 ∣∣∣ |c|
=

2δ

|c|2

Now, if δ ≤ |c|2
2 , we have

≤ ε

However, we earlier required that |x− c| < |c|
2 , so we need δ to simultaneously satisfy δ ≤ |c|

2 and

δ ≤ |c|2
2 . So let δ = min

(
|c|
2 , |c|

2

2

)
.

6. Consider the sequence (xn)
∞
n=1 ⊆ Q defined by xn := 1

n , converging to the point c := 0. Then,

lim
n→∞

f(xn) = lim
n→∞

1

= 1

̸= 0

= f(c)

so f = χ(0,∞) is not (sequentially) continuous at 0. At every other point, f is constant and is
continuous (proof similar to Q1).

7. Let ε = 1
2 , let δ > 0, and recall that any interval in R of positive length contains both rational and

irrational numbers.

Let c ∈ Q and consider the interval Iδ = (c− δ,c+ δ). There exists an irrational x ∈ Iδ as Iδ is has
length 2δ > 0. By construction, |x− c| < δ. Then,

|f(x)− f(c)| = |1− 0|
= 1

̸≤ 1

2
= ε

The proof for the case c ∈ R \Q is symmetric.

8. Let c = 0, ε > 0, and δ = ε, and suppose that |x− c| = |x| < δ. If x ∈ Q, then

|f(x)− f(c)| = |f(x)|
= |x|
< δ

= ε

If x ∈ R \Q, then

|f(x)− f(c)| = |f(x)|

reeee | 3



MA141 Analysis Examples

= |0|
< ε

In either case, |f(x)− f(c)| < ε, so f is continuous at 0.

Let c ∈ Q \ {0}, and consider the sequence defined by (xn)
∞
n=1 ⊆ R \ Q defined by xn := c +

√
2

n ,
that converges to the point c. Then,

lim
n→∞

f(xn) = lim
n→∞

0

= 0

Then, we have f(c) = c ̸= 0, so f is discontinuous at all points c ∈ Q.

If c ∈ R \ Q, then instead consider the sequence (xn)
∞
n=1 ⊆ Q defined by xn := ⌊c·10n⌋

10n (or
alternatively, appeal to Example sheet 2, Q1 to non-constructively generate such a sequence), that
converges to the point c. Then,

lim
n→∞

f(xn) = lim
n→∞

xn

= c

̸= 0

= f(c)

So f is discontinuous at all points c ∈ R \Q.

■

Example. Prove or disprove that the following series converge:

1.
∑

1
n ;

2.
∑

1
n2 ;

3.
∑ (−1)n√

n
;

4.
∑

n2

n! ;

5.
∑ sin(n)

n ;

6.
∑ sin(n)

n2 ;

7.
∑(

1
n − 1

n+1

)
;

8.
∑

2n+3n

5n ;

9.
∑ cos(πn)

n2 ;

10.
∑

nn

(n!)2 .
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