
MA141 Analysis I



Continuity

A function                is continuous at c if

for all , there exists         such that for all          ,
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So, if          , we have:



Exercise. Prove that sin is continuous.

Proof. Let          , and pick          . Then, if              , we have:

Cosine is bounded 
above by 1

By the addition 
formulae
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Exercise. Prove that the Heaviside step function is discontinuous at 0.

Proof. Let         ,         and choose           . Then,

But,

so f is discontinuous at 0.



Continuity

A function                is continuous at c if

for all , there exists         such that for all          ,



Continuity

A function                is sequentially continuous at c if

for all sequences               that converge to c,
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Proof. Let          and let (xn) be a sequence converging to c. Then,

so f is continuous at 0. Suppose otherwise that            , and let 
be defined by:

Then,
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Now suppose                  and let                 be defined by:

Then,

so f is discontinuous on     .    .
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Exercise. Determine at which point(s) the following function is continuous:

Consider          and let         .

Pick         . Then, if                 , we

necessarily have         , and hence:

so f is continuous at 0.



An aside from Aris
– intermission – 



Recall from Assignment 2, Q12:

Define a sequence (an) by:

Assume that             , and deduce the value of  .
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Define a sequence (an) by:

Assume that             , and deduce the value of  .
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– intermission – 

End of the aside
– intermission end – 



Intermediate Value Theorem

Theorem (IVT). Suppose that f is continuous on       , and that               . 

For any k satisfying                      there exists              such that           .



Exercise. Let                  be continuous, satisfying ,           , and           .
Prove that f has a fixed point in      .



Proof. Define                  by 

Note that g is continuous as the sum of continuous functions, and that
and            . By the IVT, there exists              such that             , so            .

Exercise. Let                  be continuous, satisfying ,           , and           .
Prove that f has a fixed point in      .



Extreme Value Theorem

Theorem (EVT). Suppose that f is continuous on      . Then, f is bounded 

and attains its bounds. That is, there exist numbers                     such that 

for all              , we have                                 .



Exercise. Suppose that                      is continuous, and there exist              such 
that for all          , f satisfies               . Prove that f is bounded.



Proof. Consider the restriction of f to       . By the EVT, this restriction is 
bounded. That is, there exists           such that for all             , we have

Exercise. Suppose that                      is continuous, and there exist              such 
that for all          , f satisfies               . Prove that f is bounded.

Then,                            bounds f everywhere.



Completeness Axioms

Axiom (LUB). Every bounded above increasing sequence converges.

Axiom (GLB). Every bounded below decreasing sequence converges.

Axiom (Cauchy Completeness). Every Cauchy sequence converges.

Axiom (B–W). (Covered later.)
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Proof. Let        be a bounded below decreasing sequence, and let L be its infimum. 
Let         , and consider        .
 

Because L is the infimum, there exists N such that                    . Because the 
sequence is decreasing, all following terms also satisfy this inequality, so we have

for all n > N.



Bolzano–Weierstrass Theorem

Theorem (B–W). Any bounded sequence of real numbers has a convergent 

subsequence.



Exercise. Suppose       does not diverge to infinity or negative infinity. Prove that
      has a subsequence that is bounded above.



Exercise. Suppose       does not diverge to infinity or negative infinity. Prove that
      has a subsequence that is bounded above.

Proof. If        does not diverge to infinity, then there exists           such that for 
all          , there exists          such that          . We now construct a subsequence 
by picking one such term of       for each          .
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Exercise. Suppose              is irrational. Let       be a rational sequence that 
converges to   . Show that             .

Proof. We prove this by contradiction. Suppose instead that               . By the 
previous question, there exists a subsequence        that is bounded.
 

By the Bolzano–Weierstrass theorem, this subsequence has a convergent 
subsequence, say        . Suppose this converges to some         .
 

Consider the corresponding subsequence       . We wish to show that this 
converges to    . Note that         must also converge to a natural number.
 

We can write                     and then use the product rule for convergent 
sequences.
 

But    is irrational, so     is irrational.



Series Convergence Tests
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