


Continuity

A function f : X — R is continuous at c if

for all € > 0, there exists 0 > 0 such that for all x € X,

r—c| <= |f(z)-flc)] <e



Ezxercise. Prove that sin is continuous.
Proof. Let € > (). Then, if |lx—c| < d, we have:

|f(z) = flc)] = |sin(z) — sin(c)]




Exercise. Prove that sin is continuous.
Proof. Let € > (). Then, if |lx—c| < d, we have:
|f(z) — f(c)] = |sin(x) — sin(c)]

_ T — C T+ c
= |2sIn COS ( )

By the addition
formulae




Exercise. Prove that sin is continuous.

Proof. Let € > 0. Then, if |x—c

f(x) = fle)]

VAN

< 0, we have:

sin(z) — sin(c))
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Cosine is bounded
above by 1



Ezxercise. Prove that sin is continuous.
Proof. Let € > (). Then, if |lx—c| < d, we have:

[f(z) = flc)] = |sin(z) — sin(c)]

By the addition
formulae
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Cosine is bounded
above by 1
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2 ( | sin(a)] < |2



Ezxercise. Prove that sin is continuous.
Proof. Let € > (). Then, if |lx—c| < d, we have:
|f(x) — f(c)| = |sin(x) — sin(c)
T — C :C — C)
COS
2 2

By the addition
formulae

= |2sIn

< |2s1n Cosine is bounded
N 2 above by 1
=7 ( > | sinz)| < |2




Ezxercise. Prove that sin is continuous.
Proof. Let € > (). Then, if |lx—c| < d, we have:
|f(x) — f(c)| = |sin(x) — sin(c)
T — C :C — C)
COS
2 2

By the addition
formulae

= |2sIn
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N 2 above by 1
=7 ( > | sinz)| < |2

)



Ezxercise. Prove that sin is continuous.
Proof. Let € > (). Then, if |lx—c| < d, we have:
|f(x) — f(c)| = |sin(x) — sin(c)
T — C :C — C)
COS
2 2

By the addition
formulae

= |2sIn

< |2sIn | Cosine is bounded
2 above by 1

<12(%59) sin(a)]| < [

= |z — ¢

)

So, if 0 = &, we have:
— &£



Ezxercise. Prove that sin is continuous.
Proof. Let € > (). Then, if |lx—c| < d, we have:
|f(x) — f(c)| = |sin(x) — sin(c)
T — C :C — C)
COS
2 2

By the addition
formulae

= |2sIn

< |2sIn | Cosine is bounded
2 above by 1

<12(%59) sin(a)]| < [

= |z — ¢

)

So, if 0 = &, we have:
— &£



Ezxercise. Prove that sin is continuous.
Proof. Let € > (), and pick 90 = &. Then, if |t—c| < §, we have:
|f(x) — f(c)| = |sin(x) — sin(c)

T — C :C — C)
COS
2 2

By the addition
formulae

= |2sIn

< |2sIn | Cosine is bounded
2 above by 1

<12(%59) sin(a)]| < [

= |z — ¢

)



Exercise. Prove that the Heaviside step function is discontinuous at 0.

1 2> 0
kO r < (

flx) =«




Exercise. Prove that the Heaviside step function is discontinuous at 0.

1 2> 0
kO r < (

flx) =«

A function f : X — R is discontinuous at c if

there exists € > (0 such that for all § > 0, there exists x € X
such that

z—c[<d but |f(z)— flo)] £e



Exercise. Prove that the Heaviside step function is discontinuous at 0.
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Exercise. Prove that the Heaviside step function is discontinuous at 0.
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Exercise. Prove that the Heaviside step function is discontinuous at 0.

N)IC};

Proof. Let £ = 2, 0 > 0 and choose r = —



Exercise. Prove that the Heaviside step function is discontinuous at 0.

Proof. Let ¢ = %, 0 > 0 and choose = —%. Then,

0
|x—c\:|———0|
2



Exercise. Prove that the Heaviside step function is discontinuous at 0.

Proof. Let ¢ = %, 0 > 0 and choose = —%. Then,

lx —c| = |—
But,

so fis discontinuous at O.



Continuity

A function f : X — R is continuous at c if

for all € > 0, there exists 0 > 0 such that for all x € X,

r—c| <= |f(z)-flc)] <e



Continuity

A function f : X — R is sequentially continuous at c if

for all sequences () C X that converge to c,

lim f(zn) = f(c)

n—oo



Fxercise. Determine at which point(s) the following function is continuous:

)
r xe€Q

J@) = <\O reR\Q




Fxercise. Determine at which point(s) the following function is continuous:

A o'
R
.
.
.
.
°
.
0S
.
*
*
o
.
K
R
*
.
R
r X & @ .
.
.
f ( ) o
i O — .
.
R
0 z€eR\Q SO N— S R—
o
*
.
S
.
*
.
.
o
*
.
.
Ko
.
K
*
.
*
Ko
.
.
.
.
R
°




Proof. Let ¢ = 0 and let (z,) be a sequence converging to c¢. Then,
lim f(zp) =0
n—00 fan)
= f(0)

so f1is continuous at 0.



Proof. Let ¢ = 0 and let (z,) be a sequence converging to c¢. Then,

n—00
= f(0)
so fis continuous at 0. Suppose otherwise that ¢ & @*, and let (:Ijn) C R \ Q
be defined by: \/_
2

Tn = C+ —
)
Then,

lim f(xy) = lim 0

n—od (e d®®

so fis discontinuous on Q.



Now suppose ¢ € R\ Q and let (xy,) C Q be defined by:

- |e-10"]
Then,
= C

so fis discontinuous on R \ Q.



Fxercise. Determine at which point(s) the following function is continuous:

fi(—o0,—1)U{0}U(1,0) = R

—1 < -1
flx)=¢0 =0
1 r > 1
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Fxercise. Determine at which point(s) the following function is continuous:
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Fxercise. Determine at which point(s) the following function is continuous:

Y

A

Consider ¢ = () and let € > 0.
Pick § = % Then, if ‘:I: — C| < 0, we

N/

necessarily have x = ¢, and hence:

> T

|f(x) = fle)| = |f(c) — f(o)] Y P Y
=0

< €&

_Hr\
|
(-
S—

so f1is continuous at 0. (-
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An aside fmm Aris
— intermission

Recall from Assignment 2, Q12:

Define a sequence (ay) by:

a1 = V3
Unp+1 = \/an 2

Assume that (ay,) — ¢, and deduce the value of /.

§ = 2
lim apyp = lim Van +

(=012



An aside from Aris
— intermission —

Define a sequence (ay) by:
="
o= (2)
ap+1 = sgn [ —
n-+ n
Assume that (ay,) — ¢, and deduce the value of /.

lim sgn (a_n) = lim 1

n—oQ T n— o0

sgn( lim a_n) = sgn(0)

n—oo N



End of the aside



Intermediate Value Theorem

Theorem (IVT). Suppose that fis continuous on |a,b], and that f(a) < f(b )
For any k satisfying f(a) < k < f(b) there exists ¢ € (a,b) such that f(c) =



Ezxercise. Let f:[1,3] — R be continuous, satisfying f(1) = 2, f(2) = 3, and f(3) = 1.
Prove that fhas a fixed point in [1, 3],



Ezercise. Let f:[1,3] — R be continuous, satisfying f(1) = 2, f(2) = 3, and f(3) = 1.
Prove that f has a fixed point in |1, 3].

Proof. Define g:|1,3] — R by

Note that g is continuous as the sum of continuous functions, and that ¢(3) < 0
and g(1) > 0. By the IVT, there exists ¢ € (1, 3) such that g(c) = 0, so f(c) = c.



Extreme Value Theorem

Theorem (EVT). Suppose that f is continuous on [a, b]. Then, fis bounded
and attains its bounds. That is, there exist numbers @y, 2™ € la, b such that

for all x & [a,, b], we have f(iL’*) < f(:l?) < f(:L"*)



FEzercise. Suppose that f :[0,00) — R is continuous, and there exist M, R > 0 such
that for all x > R, f satisfies | f(x)| < M. Prove that fis bounded.



FEzercise. Suppose that f:[0,00) — R is continuous, and there exist M, R > 0 such
that for all © > R, f satisfies | f(x)| < M. Prove that fis bounded.

Proof. Consider the restriction of fto |0, R By the EVT, this restriction is
bounded. That is, there exists M’ > 0 such that for all € [0, R], we have

f(z)| < M

Then, M = max{ M, M ! } bounds f everywhere.



Completeness Axioms

Azxiom (LUB). Every bounded above increasing sequence converges.
Axiom (GLB). Every bounded below decreasing sequence converges.

Axiom (Cauchy Completeness). Every Cauchy sequence converges.

Axiom (B-W). (Covered later.)



Ezxercise. Every bounded below decreasing sequence converges to its infimum.



FExercise. Every bounded below decreasing sequence converges to its infimum.

Proof. Let (ay) be a bounded below decreasing sequence, and let L be its infimum.
Let € > 0, and consider L + &



FExercise. Every bounded below decreasing sequence converges to its infimum.

Proof. Let (ay) be a bounded below decreasing sequence, and let L be its infimum.
Let € > 0, and consider L + &

Because L is the infimum, there exists N such that L < ay < L + €. Because the
sequence is decreasing, all following terms also satisfy this inequality, so we have

for all n > N.



Bolzano—Weierstrass Theorem

Theorem (B-W). Any bounded sequence of real numbers has a convergent

subsequence.



FExercise. Suppose (ay) does not diverge to infinity or negative infinity. Prove that
(an) has a subsequence that is bounded above.



Fxercise. Suppose (ay) does not diverge to infinity or negative infinity. Prove that
(an) has a subsequence that is bounded above.

Proof. If (a,,) does not diverge to infinity, then there exists M > 0 such that for
all N € N, there exists n > N such that a, < M. We now construct a subsequence

by picking one such term of (ay) for each N € N.



FExercise. Suppose a € (0,1) is irrational. Let (@> be a rational sequence that

converges to «. Show that (gn) — 0. '



FExercise. Suppose « € (0, 1) is irrational. Let (@> be a rational sequence that

dn
converges to «. Show that (gn) — o0,

Proof. We prove this by contradiction. Suppose instead that (g,) / oc. By the
previous question, there exists a subsequence (gy, ) that is bounded.



FExercise. Suppose « € (0, 1) is irrational. Let (@> be a rational sequence that

dn
converges to «. Show that (gn) — o0,

Proof. We prove this by contradiction. Suppose instead that (g,) / oc. By the
previous question, there exists a subsequence (gy, ) that is bounded.

By the Bolzano—Weierstrass theorem, this subsequence has a convergent
subsequence, say (an) Suppose this converges to some ¢ € N.
(A



FExercise. Suppose « € (0, 1) is irrational. Let (@> be a rational sequence that

dn
converges to «. Show that (gn) — o0,

Proof. We prove this by contradiction. Suppose instead that (g,) / oc. By the
previous question, there exists a subsequence (gy, ) that is bounded.

By the Bolzano—Weierstrass theorem, this subsequence has a convergent
subsequence, say (an) Suppose this converges to some ¢ € N.
(A

Consider the corresponding subsequence (pn; ). We wish to show that this
converges to ag. Note that (pnki) must also converge to a natural number.



FExercise. Suppose « € (0,1) is irrational. Let ( qn> be a rational sequence that
converges to a. Show that (qn) — oo.

Proof. We prove this by contradiction. Suppose instead that (g,) / oc. By the
previous question, there exists a subsequence (gy, ) that is bounded.

By the Bolzano—Weierstrass theorem, this subsequence has a convergent
subsequence, say (an) Suppose this converges to some ¢ € N.
(A

Consider the corresponding subsequence (pn; ). We wish to show that this

converges to ag. Note that (pnk) must also converge to a natural number.
Png..

We can write pp, = an and then use the product rule for convergent
1

sequences.

QTL ]{

But « is irrational, so aq is irrational.
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