

Sound from a jet

Could try:
$$f_j' = \frac{1}{\Delta x} (f_{j+1} - f_j) = f'(x_j) + O(\Delta x).$$

Better:

$$f'_{j} = \frac{1}{\Delta x} \left(-\frac{1}{2} f_{j-1} + \frac{1}{2} f_{j+1} \right) = f'(x_{j}) + O(\Delta x^{2}).$$

Even better:
$$f'_j = \frac{1}{\Delta x} \left(\frac{1}{12} f_{j-2} - \frac{2}{3} f_{j-1} + \frac{2}{3} f_{j+1} - \frac{1}{12} f_{j+2} \right) = f'(x_j) + O(\Delta x^4).$$

At a boundary:
$$f'_{j} = \frac{1}{\Delta x} \left(-\frac{3}{2} f_{j} + 2 f_{j+1} - \frac{1}{2} f_{j+2} \right) = f'(x_{j}) + O(\Delta x^{2}).$$

Test case

■ System to solve:

$$\frac{\partial p}{\partial t} + \frac{\partial v}{\partial x} = -\mu(x)p,$$
$$\frac{\partial v}{\partial t} + \frac{\partial p}{\partial x} = -\nu(x)v,$$

Boundary conditions: v(0,t) = v(L,t) = 0

Test case

System to solve:

$$\frac{\partial p}{\partial t} + \frac{\partial v}{\partial x} = -\mu(x)p,$$
$$\frac{\partial v}{\partial t} + \frac{\partial p}{\partial x} = -\nu(x)v,$$

Boundary conditions:
$$v(0,t) = v(L,t) = 0$$

There is an analytic solution (using characteristics). If $\mu \equiv \nu$, at time t=2L,

$$p(x, 2L) = Ap(x, 0)$$

$$v(x, 2L) = Av(x, 0)$$

$$p(x, 2L) = Ap(x, 0) \qquad v(x, 2L) = Av(x, 0) \qquad \text{were } A = \exp\left\{-2\int_0^L \mu(x) \, \mathrm{d}x\right\}$$

Test case

System to solve:

$$\frac{\partial p}{\partial t} + \frac{\partial v}{\partial x} = -\mu(x)p,$$
$$\frac{\partial v}{\partial t} + \frac{\partial p}{\partial x} = -\nu(x)v,$$

Boundary conditions: v(0,t) = v(L,t) = 0

$$v(0,t) = v(L,t) = 0$$

There is an analytic solution (using characteristics). If $\mu \equiv \nu$, at time t=2L,

$$p(x, 2L) = Ap(x, 0)$$

$$v(x, 2L) = Av(x, 0)$$

$$p(x,2L) = Ap(x,0) \qquad v(x,2L) = Av(x,0) \qquad \text{were } A = \exp\left\{-2\int_0^L \mu(x) \, \mathrm{d}x\right\}$$

Conserved laws:

$$\frac{d}{dt} \int_0^L p \, dx = -\int_0^L \mu p \, dx, \qquad \frac{d}{dt} \int_0^L v \, dx = -\int_0^L \nu v \, dx + p(0, t) - p(L, t),$$

$$\frac{d}{dt} \int_0^L \frac{1}{2} p^2 + \frac{1}{2} v^2 \, dx = -\int_0^L \mu p^2 \, dx - \int_0^L \nu v^2 \, dx.$$

Test case: 1D wave equation with damping

Test case performance

■ Integration by parts (IBP):

$$\langle f, g \rangle = \int_{x_0}^{x_N} f(x)g(x) dx \qquad \Rightarrow \qquad \left\langle f, \frac{\mathrm{d}g}{\mathrm{d}x} \right\rangle = f(x_N)g(x_N) - f(x_0)g(x_0) - \left\langle \frac{\mathrm{d}f}{\mathrm{d}x}, g \right\rangle$$

■ Integration by parts (IBP):

$$\langle f, g \rangle = \int_{x_0}^{x_N} f(x)g(x) dx \qquad \Rightarrow \qquad \left\langle f, \frac{\mathrm{d}g}{\mathrm{d}x} \right\rangle = f(x_N)g(x_N) - f(x_0)g(x_0) - \left\langle \frac{\mathrm{d}f}{\mathrm{d}x}, g \right\rangle$$

■ Discretize:

$$oldsymbol{f} = \left(f_0, f_1, \dots, f_N
ight)^{ ext{T}} \qquad \qquad oldsymbol{f'} = \mathsf{D} oldsymbol{f}$$

■ Integration by parts (IBP):

$$\langle f, g \rangle = \int_{x_0}^{x_N} f(x)g(x) dx \qquad \Rightarrow \qquad \left\langle f, \frac{\mathrm{d}g}{\mathrm{d}x} \right\rangle = f(x_N)g(x_N) - f(x_0)g(x_0) - \left\langle \frac{\mathrm{d}f}{\mathrm{d}x}, g \right\rangle$$

■ Discretize:

$$\boldsymbol{f} = (f_0, f_1, \dots, f_N)^{\mathrm{T}}$$
 $\boldsymbol{f'} = \mathsf{D}\boldsymbol{f}$

■ Summation by parts (SBP) with a discrete metric P:

$$\langle f,\,g
angle_{\mathsf{P}}=oldsymbol{f}^{\mathbf{T}}\mathsf{P}oldsymbol{g}=\sum_{i,j=1}^{N}f_{i}\mathsf{P}_{ij}g_{j}\qquad\Rightarrow\qquad \langle oldsymbol{f},\,\mathsf{D}oldsymbol{g}
angle_{\mathsf{P}}=f_{N}g_{N}-f_{0}g_{0}-\langle\mathsf{D}oldsymbol{f},\,oldsymbol{g}
angle_{\mathsf{P}}$$

■ Integration by parts (IBP):

$$\langle f, g \rangle = \int_{x_0}^{x_N} f(x)g(x) dx \qquad \Rightarrow \qquad \left\langle f, \frac{\mathrm{d}g}{\mathrm{d}x} \right\rangle = f(x_N)g(x_N) - f(x_0)g(x_0) - \left\langle \frac{\mathrm{d}f}{\mathrm{d}x}, g \right\rangle$$

■ Discretize:

$$oldsymbol{f} = \left(f_0, f_1, \dots, f_N\right)^{\mathrm{T}}$$
 $oldsymbol{f'} = \mathsf{D} oldsymbol{f}$

■ Summation by parts (SBP) with a discrete metric P:

$$\langle f,\,g
angle_{\mathsf{P}}=oldsymbol{f}^{\mathbf{T}}\mathsf{P}oldsymbol{g}=\sum_{i,j=1}^{N}f_{i}\mathsf{P}_{ij}g_{j}\qquad\Rightarrow\qquad \langle oldsymbol{f},\,\mathsf{D}oldsymbol{g}
angle_{\mathsf{P}}=f_{N}g_{N}-f_{0}g_{0}-\langle\mathsf{D}oldsymbol{f},\,oldsymbol{g}
angle_{\mathsf{P}}$$

 \blacksquare Equivalently, PD = Q, with

$$\mathsf{P} = \mathsf{P}^{\mathrm{T}}$$
 $\mathsf{Q} = -\mathsf{Q}^{\mathrm{T}} + e_{N}e_{N}^{\mathrm{T}} - e_{0}e_{0}^{\mathrm{T}}$

Summation by Parts (4th order interior, 3rd order boundaries)

Summation by Parts and stability

■ Our problem is:

$$\frac{\partial p}{\partial t} + \frac{\partial v}{\partial x} = -\mu(x)p,$$
$$\frac{\partial v}{\partial t} + \frac{\partial p}{\partial x} = -\nu(x)v,$$

Summation by Parts and stability

Our problem is:

$$rac{\mathrm{d}oldsymbol{p}}{\mathrm{d}t} + \mathsf{D}oldsymbol{v} = -\mathsf{M}oldsymbol{p}, \ rac{\mathrm{d}oldsymbol{v}}{\mathrm{d}t} + \mathsf{D}oldsymbol{p} = -\mathsf{N}oldsymbol{v},$$

■ Continuous conservation law:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_0^L \frac{1}{2}p^2 + \frac{1}{2}v^2 \, \mathrm{d}x = -\int_0^L \mu p^2 \, \mathrm{d}x - \int_0^L \nu v^2 \, \mathrm{d}x.$$

Summation by Parts and stability

■ Our problem is:

$$rac{\mathrm{d} oldsymbol{p}}{\mathrm{d} t} + \mathsf{D} oldsymbol{v} = -\mathsf{M} oldsymbol{p}, \ rac{\mathrm{d} oldsymbol{v}}{\mathrm{d} t} + \mathsf{D} oldsymbol{p} = -\mathsf{N} oldsymbol{v},$$

■ Continuous conservation law:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_0^L \frac{1}{2}p^2 + \frac{1}{2}v^2 \, \mathrm{d}x = -\int_0^L \mu p^2 \, \mathrm{d}x - \int_0^L \nu v^2 \, \mathrm{d}x.$$

■ Discrete conservation law:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} \langle \boldsymbol{p}, \boldsymbol{p} \rangle_{\mathsf{P}} + \frac{1}{2} \langle \boldsymbol{v}, \boldsymbol{v} \rangle_{\mathsf{P}} \right) = \left\langle \boldsymbol{p}, \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} \right\rangle_{\mathsf{P}} + \left\langle \boldsymbol{v}, \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} \right\rangle_{\mathsf{P}}$$

$$= -\left\langle \boldsymbol{p}, \mathsf{D}\boldsymbol{v} + \mathsf{M}\boldsymbol{p} \right\rangle_{\mathsf{P}} - \left\langle \boldsymbol{v}, \mathsf{D}\boldsymbol{p} + \mathsf{N}\boldsymbol{v} \right\rangle_{\mathsf{P}}$$

$$= -\left\langle \boldsymbol{p}, \mathsf{D}\boldsymbol{v} \right\rangle_{\mathsf{P}} - \left\langle \boldsymbol{p}, \mathsf{M}\boldsymbol{p} \right\rangle_{\mathsf{P}} + \left\langle \mathsf{D}\boldsymbol{v}, \boldsymbol{p} \right\rangle_{\mathsf{P}} - \left\langle \boldsymbol{v}, \mathsf{N}\boldsymbol{v} \right\rangle_{\mathsf{P}}$$

Test case performance

Consider interpolating basis functions $\psi_i(x_j) = \delta_{ij}$. Let $\Psi_N = \mathrm{span}\{\psi_j : j = 0, \dots, N\}$.

- Consider interpolating basis functions $\psi_i(x_j) = \delta_{ij}$. Let $\Psi_N = \operatorname{span}\{\psi_j : j = 0, \dots, N\}$.
- Given f(x), define $f_j = f(x_j)$ and $\hat{f}(x) = \sum_j f_j \psi_j(x)$. Say $\hat{f}(x)$ is the interpolation of f(x), written $\hat{f} = \mathcal{I}[f]$.

- lacktriangle Consider interpolating basis functions $\psi_i(x_j) = \delta_{ij}$. Let $\Psi_N = \mathrm{span}\{\psi_j : j = 0, \dots, N\}$.
- Given f(x), define $f_j = f(x_j)$ and $\hat{f}(x) = \sum_j f_j \psi_j(x)$. Say $\hat{f}(x)$ is the interpolation of f(x), written $\hat{f} = \mathcal{I}[f]$.
- If we define

$$\mathsf{P}_{ij} = \int_0^{x_N} \psi_i(x)\psi_j(x) \,\mathrm{d}x, \qquad \qquad \mathsf{Q}_{ij} = \int_0^{X_N} \psi_i(x)\psi_j'(x) \,\mathrm{d}x,$$

$$\boldsymbol{u}^T \mathsf{P} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}(x) \, \mathrm{d}x = \boldsymbol{v}^T \mathsf{P} \boldsymbol{u}$$

$$\mathbf{u}^T \mathsf{Q} \mathbf{v} = \int_0^{x_N} \hat{u}(x) \hat{v}'(x) \, \mathrm{d}x = \left[\hat{u} \hat{v}\right]_0^{x_N} - \int_0^{x_N} \hat{u}'(x) \hat{v}(x) \, \mathrm{d}x = u_N v_N - u_0 v_0 - \mathbf{v}^T \mathsf{Q} \mathbf{u},$$

- Consider interpolating basis functions $\psi_i(x_j) = \delta_{ij}$. Let $\Psi_N = \operatorname{span}\{\psi_j : j = 0, \dots, N\}$.
- Given f(x), define $f_j = f(x_j)$ and $\hat{f}(x) = \sum_j f_j \psi_j(x)$. Say $\hat{f}(x)$ is the interpolation of f(x), written $\hat{f} = \mathcal{I}[f]$.
- If we define

$$\mathsf{P}_{ij} = \int_0^{x_N} \psi_i(x)\psi_j(x) \,\mathrm{d}x, \qquad \qquad \mathsf{Q}_{ij} = \int_0^{X_N} \psi_i(x)\psi_j'(x) \,\mathrm{d}x,$$

then P and Q have the SBP property:

$$\boldsymbol{u}^{T} \mathsf{P} \boldsymbol{v} = \int_{0}^{x_{N}} \hat{u}(x) \hat{v}(x) \, \mathrm{d}x = \boldsymbol{v}^{T} \mathsf{P} \boldsymbol{u}$$

$$\boldsymbol{u}^{T} \mathsf{Q} \boldsymbol{v} = \int_{0}^{x_{N}} \hat{u}(x) \hat{v}'(x) \, \mathrm{d}x = [\hat{u}\hat{v}]_{0}^{x_{N}} - \int_{0}^{x_{N}} \hat{u}'(x) \hat{v}(x) \, \mathrm{d}x = u_{N} v_{N} - u_{0} v_{0} - \boldsymbol{v}^{T} \mathsf{Q} \boldsymbol{u},$$

lacksquare How do we differentiate \hat{f} (as $\hat{f}'(x) = \sum_j f_j \psi_j'(x)$ is not necessarily in Ψ_N)?

- Consider interpolating basis functions $\psi_i(x_j) = \delta_{ij}$. Let $\Psi_N = \operatorname{span}\{\psi_j : j = 0, \dots, N\}$.
- Given f(x), define $f_j = f(x_j)$ and $\hat{f}(x) = \sum_j f_j \psi_j(x)$. Say $\hat{f}(x)$ is the interpolation of f(x), written $\hat{f} = \mathcal{I}[f]$.
- If we define

$$\mathsf{P}_{ij} = \int_0^{x_N} \psi_i(x)\psi_j(x) \,\mathrm{d}x, \qquad \qquad \mathsf{Q}_{ij} = \int_0^{X_N} \psi_i(x)\psi_j'(x) \,\mathrm{d}x,$$

$$\boldsymbol{u}^T \mathsf{P} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}(x) \, \mathrm{d}x = \boldsymbol{v}^T \mathsf{P} \boldsymbol{u}$$

$$\boldsymbol{u}^T \mathsf{Q} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}'(x) \, \mathrm{d}x = [\hat{u}\hat{v}]_0^{x_N} - \int_0^{x_N} \hat{u}'(x) \hat{v}(x) \, \mathrm{d}x = u_N v_N - u_0 v_0 - \boldsymbol{v}^T \mathsf{Q} \boldsymbol{u},$$

- lacksquare How do we differentiate \hat{f} (as $\hat{f}'(x) = \sum_j f_j \psi_j'(x)$ is not necessarily in Ψ_N)?
- Pick $F(x) = \sum_j f_j' \psi_j(x)$ as the closest point in Ψ_N (using the L_2 norm) to $\hat{f}'(x) = \sum_j f_j \psi_j'(x)$;

- Consider interpolating basis functions $\psi_i(x_j) = \delta_{ij}$. Let $\Psi_N = \operatorname{span}\{\psi_j : j = 0, \dots, N\}$.
- Given f(x), define $f_j = f(x_j)$ and $\hat{f}(x) = \sum_j f_j \psi_j(x)$. Say $\hat{f}(x)$ is the interpolation of f(x), written $\hat{f} = \mathcal{I}[f]$.
- If we define

$$\mathsf{P}_{ij} = \int_0^{x_N} \psi_i(x)\psi_j(x) \,\mathrm{d}x, \qquad \qquad \mathsf{Q}_{ij} = \int_0^{X_N} \psi_i(x)\psi_j'(x) \,\mathrm{d}x,$$

$$\boldsymbol{u}^T \mathsf{P} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}(x) \, \mathrm{d}x = \boldsymbol{v}^T \mathsf{P} \boldsymbol{u}$$

$$\boldsymbol{u}^T \mathsf{Q} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}'(x) \, \mathrm{d}x = [\hat{u}\hat{v}]_0^{x_N} - \int_0^{x_N} \hat{u}'(x) \hat{v}(x) \, \mathrm{d}x = u_N v_N - u_0 v_0 - \boldsymbol{v}^T \mathsf{Q} \boldsymbol{u},$$

- \blacksquare How do we differentiate \hat{f} (as $\hat{f}'(x) = \sum_{j} f_j \psi_j'(x)$ is not necessarily in Ψ_N)?
- Pick $F(x) = \sum_j f'_j \psi_j(x)$ as the closest point in Ψ_N (using the L_2 norm) to $\hat{f}'(x) = \sum_j f_j \psi'_j(x)$; i.e. F(x) is the orthogonal projection of $\hat{f}'(x)$ into Ψ_N , written $F = \mathcal{P}[\hat{f}']$,

- Consider interpolating basis functions $\psi_i(x_j) = \delta_{ij}$. Let $\Psi_N = \operatorname{span}\{\psi_j : j = 0, \dots, N\}$.
- Given f(x), define $f_j = f(x_j)$ and $\hat{f}(x) = \sum_j f_j \psi_j(x)$. Say $\hat{f}(x)$ is the interpolation of f(x), written $\hat{f} = \mathcal{I}[f]$.
- If we define

$$\mathsf{P}_{ij} = \int_0^{x_N} \psi_i(x)\psi_j(x) \,\mathrm{d}x, \qquad \qquad \mathsf{Q}_{ij} = \int_0^{X_N} \psi_i(x)\psi_j'(x) \,\mathrm{d}x,$$

$$\boldsymbol{u}^T \mathsf{P} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}(x) \, \mathrm{d}x = \boldsymbol{v}^T \mathsf{P} \boldsymbol{u}$$

$$\boldsymbol{u}^T \mathsf{Q} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}'(x) \, \mathrm{d}x = [\hat{u}\hat{v}]_0^{x_N} - \int_0^{x_N} \hat{u}'(x) \hat{v}(x) \, \mathrm{d}x = u_N v_N - u_0 v_0 - \boldsymbol{v}^T \mathsf{Q} \boldsymbol{u},$$

- How do we differentiate \hat{f} (as $\hat{f}'(x) = \sum_{j} f_j \psi_j'(x)$ is not necessarily in Ψ_N)?
- Pick $F(x) = \sum_j f'_j \psi_j(x)$ as the closest point in Ψ_N (using the L_2 norm) to $\hat{f}'(x) = \sum_j f_j \psi'_j(x)$;

i.e.
$$F(x)$$
 is the orthogonal projection of $\hat{f}'(x)$ into Ψ_N , written $F = \mathcal{P}[\hat{f}']$, so
$$\int_0^L \psi_i(x) \left(\hat{f}'(x) - \sum_j f_j' \psi_j(x)\right) \mathrm{d}x = 0 \qquad \forall i. \qquad \Rightarrow \qquad \mathsf{P} \boldsymbol{f}' = \mathsf{Q} \boldsymbol{f}$$

- Consider interpolating basis functions $\psi_i(x_j) = \delta_{ij}$. Let $\Psi_N = \operatorname{span}\{\psi_j : j = 0, \dots, N\}$.
- Given f(x), define $f_j = f(x_j)$ and $\hat{f}(x) = \sum_j f_j \psi_j(x)$. Say $\hat{f}(x)$ is the interpolation of f(x), written $\hat{f} = \mathcal{I}[f]$.
- If we define

$$\mathsf{P}_{ij} = \int_0^{x_N} \psi_i(x)\psi_j(x) \,\mathrm{d}x, \qquad \qquad \mathsf{Q}_{ij} = \int_0^{X_N} \psi_i(x)\psi_j'(x) \,\mathrm{d}x,$$

then P and Q have the SBP property:

$$\boldsymbol{u}^T \mathsf{P} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}(x) \, \mathrm{d}x = \boldsymbol{v}^T \mathsf{P} \boldsymbol{u}$$

$$\boldsymbol{u}^T \mathsf{Q} \boldsymbol{v} = \int_0^{x_N} \hat{u}(x) \hat{v}'(x) \, \mathrm{d}x = [\hat{u}\hat{v}]_0^{x_N} - \int_0^{x_N} \hat{u}'(x) \hat{v}(x) \, \mathrm{d}x = u_N v_N - u_0 v_0 - \boldsymbol{v}^T \mathsf{Q} \boldsymbol{u},$$

- How do we differentiate \hat{f} (as $\hat{f}'(x) = \sum_{j} f_j \psi_j'(x)$ is not necessarily in Ψ_N)?
- Pick $F(x) = \sum_i f'_i \psi_j(x)$ as the closest point in Ψ_N (using the L_2 norm) to $\hat{f}'(x) = \sum_i f_i \psi'_i(x)$; i.e. F(x) is the orthogonal projection of $\hat{f}'(x)$ into Ψ_N , written $F = \mathcal{P}[\hat{f}']$, so $\int_0^L \psi_i(x) \left(\hat{f}'(x) - \sum_i f_j' \psi_j(x) \right) \mathrm{d}x = 0 \qquad \forall i. \qquad =$

$$\int_0^L \psi_i(x) \left(\hat{f}'(x) - \sum_j f_j' \psi_j(x) \right) dx = 0 \qquad \forall i. \qquad \Rightarrow \qquad \mathsf{P} \boldsymbol{f'} = \mathsf{Q} \boldsymbol{f}$$

Hence, all interpolating bases naturally lead to an SBP derivative scheme. But of what order?

Finite differences are order $O(\Delta x^p)$ at position i if it is exact for all polynomials of degree p,

$$\sum_{j} \mathsf{P}_{ij} n x_j^{n-1} = \sum_{j} \mathsf{Q}_{ij} x_j^n \qquad \forall n = 0, 1, \dots, p.$$

In interpolating basis notation,

$$\int_0^L \psi_i(x) \left(\sum_j n x_j^{n-1} \psi_j(x) - \sum_j x_j^n \psi_j'(x) \right) dx = 0 \qquad \forall n = 0, 1, \dots, p.$$

Finite differences are order $O(\Delta x^p)$ at position i if it is exact for all polynomials of degree p,

$$\sum_{j} \mathsf{P}_{ij} n x_j^{n-1} = \sum_{j} \mathsf{Q}_{ij} x_j^n \qquad \forall n = 0, 1, \dots, p.$$

In interpolating basis notation,

$$\int_0^L \psi_i(x) \left(\sum_j n x_j^{n-1} \psi_j(x) - \sum_j x_j^n \psi_j'(x) \right) dx = 0 \qquad \forall n = 0, 1, \dots, p.$$

If this is true for all i, then $\mathcal{I}[P'] = \mathcal{P}[\mathcal{I}[P]']$ for polynomials P(x) up to degree p:

Finite differences are order $O(\Delta x^p)$ at position i if it is exact for all polynomials of degree p,

$$\sum_{j} \mathsf{P}_{ij} n x_j^{n-1} = \sum_{j} \mathsf{Q}_{ij} x_j^n \qquad \forall n = 0, 1, \dots, p.$$

In interpolating basis notation,

$$\int_0^L \psi_i(x) \left(\sum_j n x_j^{n-1} \psi_j(x) - \sum_j x_j^n \psi_j'(x) \right) dx = 0 \qquad \forall n = 0, 1, \dots, p.$$

If this is true for all i, then $\mathcal{I}[P'] = \mathcal{P}[\mathcal{I}[P]']$ for polynomials P(x) up to degree p:

■ This is trivially true if $\mathcal{I}P = P$ for polynomials of degree p.

■ Take basis functions corresponding to piecewise linear interpolation,

$$\psi_j(x) = \begin{cases} 1 - |x - x_j| & |x - x_j| < 1 \\ 0 & |x - x_j| \ge 1 \end{cases}$$

■ Take basis functions corresponding to piecewise linear interpolation,

$$\psi_j(x) = \begin{cases} 1 - |x - x_j| & |x - x_j| < 1 \\ 0 & |x - x_j| \ge 1 \end{cases}$$

■ Take basis functions corresponding to piecewise linear interpolation,

$$\psi_j(x) = \begin{cases} 1 - |x - x_j| & |x - x_j| < 1 \\ 0 & |x - x_j| \ge 1 \end{cases}$$

■ Take basis functions corresponding to piecewise linear interpolation,

$$\psi_j(x) = \begin{cases} 1 - |x - x_j| & |x - x_j| < 1 \\ 0 & |x - x_j| \ge 1 \end{cases}$$

■ Take basis functions corresponding to piecewise linear interpolation,

$$\psi_j(x) = \begin{cases} 1 - |x - x_j| & |x - x_j| < 1 \\ 0 & |x - x_j| \ge 1 \end{cases}$$

■ Take basis functions corresponding to piecewise linear interpolation,

$$\psi_j(x) = \begin{cases} 1 - |x - x_j| & |x - x_j| < 1 \\ 0 & |x - x_j| \ge 1 \end{cases}$$

- We are guarenteed an SBP scheme, but which, and of what order?
- By calculation, we find

$$\mathsf{P}_{ij} = \int_{0}^{L} \psi_{i}(x)\psi_{j}(x) \, \mathrm{d}x = \begin{pmatrix} \frac{1}{3} & \frac{1}{6} & & & \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & & \\ & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & & \\ & & \ddots & \ddots & \ddots \end{pmatrix}, \quad \mathsf{Q}_{ij} = \int_{0}^{L} \psi_{i}(x)\psi'_{j}(x) \, \mathrm{d}x = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & & & \\ -\frac{1}{2} & 0 & \frac{1}{2} & & & \\ & & -\frac{1}{2} & 0 & \frac{1}{2} & & \\ & & & \ddots & \ddots & \ddots \end{pmatrix}.$$

- ◆ This is a 4th order tri-diagonal maximal order scheme in the interior.
- ♦ It is only 1st order at the boundary.
- ◆ The interpolation is only exact for polynomials of degree 1.