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Finite Differences
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Finite Differences

X Could try:
fi = 3z (w1 = fi) = f1(z5) + O(Ax).
Better:
fi = Lx (_%fj—l + %fj+1) = f'(z) +O(Aac2).

3/13



Finite Differences

Even better:1
1 1 2 2 / 4
fi = A (Ef‘j_2 — gfj—l + gfj+1 — Efj+2> = f'(z;) + O(Az”).
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Finite Differences

At a boundary:

fi = Aia: (—gfj +2fj+1 — %fj+2> = f'(z;) + O(Az?).
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Finite Differences

w = 7, interior is O(Aa:G), use symmetric stencil near boundaries:

fo —3/2 2 —1/2 o
(f{\ (—1/2 0 1/2 ) (fl\
f5 1| 1/12 —2/3 0 2/3 —1/12 f
fa|= Ay | —1/60 3/20 -3/4 0 3/4 —=3/20 1/60 fa
fa -1/60 3/20 —3/4 0 3/4 —=3/20 1/60 || f4
) S Ay
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Test case

B System to solve:

op Ov
ot + 9 w(z)p,
ov  Op
It + 9 v(z)v,

Boundary conditions: v(0,t) =v(L,t) =0
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Test case

B System to solve:

Oop Ov

5% T or —u(@)p,
ov  Op
9% T or v(z)v,

Boundary conditions: v(0,t) =v(L,t) =0

B There is an analytic solution (using characteristics). If u = v, at time ¢t = 2L,

p(z,2L) = Ap(z,0) o(z,2L) = Av(z,0) were A = exp {—2 /0 " @) dx}
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Test case

B System to solve:

Oop Ov

5% T or —u(@)p,
ov  Op
9% T or v(z)v,

Boundary conditions: v(0,t) =v(L,t) =0

B There is an analytic solution (using characteristics). If u = v, at time ¢t = 2L,

L
p(x,2L) = Ap(x,0) v(x,2L) = Av(x,0) were A = exp {—2/ p(x) dx}
0
m Conserved laws:
d L L d L L
o pdx:—/ pp dx, —/ vdx:—/ vvdx + p(0,t) — p(L,t),
L L

L
d %p2 + %vz dax = —/ ,up2 do — / vo? da.
dt Jq 0 0
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Test case:

1D wave equation with damping

(a)t=0

0 4 16 20 21 23
(b) t = 12

ey
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(c) t = 12 (logarithmic scale)
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Test case performance
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Summation by Parts (Strand, 1994)

B Integration by parts (IBP):

o= [ Tweaas = (1.5 = famtan) - ot - (5L o)
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Summation by Parts (Strand, 1994)

B Integration by parts (IBP):

oo = [T@e@ds = (£ ) = enaten)  falatan) - (3L o)

B Discretize:

f=ofr, o fn)" f'=Df
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Summation by Parts (Strand, 1994)

B Integration by parts (IBP):

oo = [T@e@ds = (£ ) = enaten)  falatan) - (3L o)

B Discretize:

f=ofr, o fn)" f'=Df

B Summation by parts (SBP) with a discrete metric P:

N
(f,9)p=F"Pg= > fiPiyg; =  (f,Dg)e = fngn — fogo — (Df, g)r

1,7=1
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Summation by Parts (Strand, 1994)

B Integration by parts (IBP):

oo = [T@e@ds = (£ ) = enaten)  falatan) - (3L o)

B Discretize:

f= o fro oo fn)" f'=Df

B Summation by parts (SBP) with a discrete metric P:

N
(f,9)p=F"Pg= > fiPiyg; =  (f,Dg)e = fngn — fogo — (Df, g)r

i, j=1
B Equivalently, PD = Q, with

P=P" Q=-Q"' +enen’ —eoeo"
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Summation by Parts (4th order interior, 3rd order boundaries)
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Summation by Parts and stability

B Our problem is:
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Summation by Parts and stability

B Our problem is:

dp
— +Dv =-—-M
dv
— +Dp = —N

B Continuous conservation law:
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Summation by Parts and stability

B Our problem is:

B Continuous conservation law:

B Discrete conservation law:

%(%(p, p)p + 5 (v, ’v>P)

dp
— +Dv =-—-M
dv
~— 1 Dp=—N

L L
vide = — / ,up2 dox — / vo® dz.
0 0

Prae ), T\ e/,

—<p, Dv + I\/Ip> — <v, Dp + Nv>
P P
—(p, Dv)p — (p,Mp)p + (Dv,p)p — (v,Nv)p
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Test case performance
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SBP Schemes from Interpolating Bases

m Consider interpolating basis functions 1;(x;) = §;;. Let ¥y =span{vy; : j=0,...,N}.
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SBP Schemes from Interpolating Bases

m Consider interpolating basis functions 1;(x;) = §;;. Let ¥y =span{vy; : j=0,...,N}.

m Given f(z), define f; = f(z;) and f(z) = >, [ivi(z). Say f(z) is the interpolation of f(z), written f = Z[f].
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SBP Schemes from Interpolating Bases

m Consider interpolating basis functions 1;(x;) = §;;. Let ¥y =span{vy; : j=0,...,N}.
m Given f(z), define f; = f(z;) and f(z) = >, [ivi(z). Say f(z) is the interpolation of f(z), written f = Z[f].

m If we define X

Pij = /0 ) Yi(x);(z) de, Qij = Vi) (x) de,

0

then P and Q have the SBP property:
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SBP Schemes from Interpolating Bases

m Consider interpolating basis functions 1;(x;) = §;;. Let ¥y =span{vy; : j=0,...,N}.
m Given f(z), define f; = f(z;) and f(z) = >, [ivi(z). Say f(z) is the interpolation of f(z), written f = Z[f].

m If we define X

Pij = /0 ) Yi(x);(z) de, Qij = Vi) (x) de,

0

then P and Q have the SBP property: -
uw'Pv = / i(z)o(z) de = v Pu
0

TN TN
uw'Qu = / ()0 (x) do = [ad]gN — / o' (2)0(z) dz = unvn — uovo — v’ Qu,
0 0

m How do we differentiate f (as f'(z) = >, fivi(x) is not necessarily in Wy )?
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m How do we differentiate f (as f'(z) = >, fivi(x) is not necessarily in Wy )?

m Pick F(z) =}, fjw;(z) as the closest point in Wy (using the L2 norm) to f'(z) = > fivi(@);
i.e. F(x) is the orthogonal projection of f’(z) into Wy, written F' = P[f’], so

/O o) (f’<x> - Zf;wj<x>) =0 Vi _ o _ O
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SBP Schemes from Interpolating Bases

m Consider interpolating basis functions 1;(x;) = §;;. Let ¥y =span{vy; : j=0,...,N}.
m Given f(z), define f; = f(z;) and f(z) = >, [ivi(z). Say f(z) is the interpolation of f(z), written f = Z[f].

m If we define X

Pij = /OmN Yi(x);(z) de, Qij = Vi) (x) de,

0

then P and Q have the SBP property: -
uw'Pv = / i(z)o(z) de = v Pu
0

TN TN
uw'Qu = / ()0 (x) do = [ad]gN — / o' (2)0(z) dz = unvn — uovo — v’ Qu,
0 0
m How do we differentiate f (as f'(z) = >, fivi(x) is not necessarily in Wy )?

m Pick F(z) =}, fjw;(z) as the closest point in Wy (using the L2 norm) to f'(z) = > fivi(@);
i.e. F(x) is the orthogonal projection of f’(z) into Wy, written F' = P[f’], so

L
/ %(37)(]0,(33)_2](3{%(3?)) dz =0 V1. = Pf':Qf
0 ;
J
B Hence, all interpolating bases naturally lead to an SBP derivative scheme. But of what order?

11 /13



SBP Schemes from Interpolating Bases: Order

m Finite differences are order O(Ax?) at position 7 if it is exact for all polynomials of degree p,

—1
ZP@J’RZIZ? = ZQWCIJ? Vn:O,l,...,p.
J J
B In interpolating basis notation,

[ i S s -Sisio) o vazo
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SBP Schemes from Interpolating Bases: Order

m Finite differences are order O(Ax?) at position 7 if it is exact for all polynomials of degree p,

—1
ZP@J??,CIZ? = ZQWCIJ? Vn:O,l,...,p.
J J
B In interpolating basis notation,

[ i S s -Sisio) o vazo

m If this is true for all i, then Z[P'] = P[Z[P]’] for polynomials P(z) up to degree p:

/o /dm
f/

[
A
mr \*
d/dx o
———————————— o N e
U] P II7]
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SBP Schemes from Interpolating Bases: Order

m Finite differences are order O(Ax?) at position 7 if it is exact for all polynomials of degree p,

—1
ZP@J’I?,QZ? = ZQ@Q«T? Vn:O,l,...,p.
J J
B In interpolating basis notation,

[ i S s -Sisio) o vazo

m If this is true for all i, then Z[P'] = P[Z[P]’] for polynomials P(z) up to degree p:
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A
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———————————— o N e
U] P II7]
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B This is trivially true if ZP = P for polynomials of degree p.



An example: Piecewise Linear Interpolation

B Take basis functions corresponding to piecewise linear interpolation,

| B l—|r—xj |r—x<1
%(:13)—{0 |z —x;] > 1
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An example: Piecewise Linear Interpolation

B Take basis functions corresponding to piecewise linear interpolation,

%-(:13):{ l—|x—z;] |Jz—x<1

0 ’ZIZ—IIZj‘Zl

B We are guarenteed an SBP scheme, but which, and of what order?

2
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An example: Piecewise Linear Interpolation

B Take basis functions corresponding to piecewise linear interpolation,

| B l—|r—xj |r—x<1
%(@_{0 |z —x;] > 1

B We are guarenteed an SBP scheme, but which, and of what order?

| | 2 | | 7
— fl(=)
_ 1r ]E/(x) / -
7 0 //\\\\// .
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B Take basis functions corresponding to piecewise linear interpolation,
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I | 2
1 —]
X

— 0 —
1 —
_9 —

0 | | | | | | | | | | | |

0 1 2 3 4 5 6 0 1 2 3 4 5 6

13 /13



An example: Piecewise Linear Interpolation

B Take basis functions corresponding to piecewise linear interpolation,

l—|x—z;] |Jz—x<1

%(@:{0 lx — x| > 1

B We are guarenteed an SBP scheme, but which, and of what order?

m By calculation, we find

—
|~ Wl

O N

D~ WIN O+

O N

» Qij:/Osz'(x)%(x)dx: B

¢ This is a 4th order tri-diagonal maximal order scheme in the interior.
¢ It is only 1st order at the boundary.
¢ The interpolation is only exact for polynomials of degree 1.

winNn Ol

Pij = /OL Yi(x)j(z) de =

|
N |-
N[
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